File size: 25,148 Bytes
b4e8f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
2023-10-06 20:41:12,480 ----------------------------------------------------------------------------------------------------
2023-10-06 20:41:12,481 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-06 20:41:12,482 ----------------------------------------------------------------------------------------------------
2023-10-06 20:41:12,482 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-06 20:41:12,482 ----------------------------------------------------------------------------------------------------
2023-10-06 20:41:12,482 Train:  1100 sentences
2023-10-06 20:41:12,482         (train_with_dev=False, train_with_test=False)
2023-10-06 20:41:12,482 ----------------------------------------------------------------------------------------------------
2023-10-06 20:41:12,482 Training Params:
2023-10-06 20:41:12,482  - learning_rate: "0.00015" 
2023-10-06 20:41:12,482  - mini_batch_size: "4"
2023-10-06 20:41:12,482  - max_epochs: "10"
2023-10-06 20:41:12,482  - shuffle: "True"
2023-10-06 20:41:12,482 ----------------------------------------------------------------------------------------------------
2023-10-06 20:41:12,482 Plugins:
2023-10-06 20:41:12,482  - TensorboardLogger
2023-10-06 20:41:12,483  - LinearScheduler | warmup_fraction: '0.1'
2023-10-06 20:41:12,483 ----------------------------------------------------------------------------------------------------
2023-10-06 20:41:12,483 Final evaluation on model from best epoch (best-model.pt)
2023-10-06 20:41:12,483  - metric: "('micro avg', 'f1-score')"
2023-10-06 20:41:12,483 ----------------------------------------------------------------------------------------------------
2023-10-06 20:41:12,483 Computation:
2023-10-06 20:41:12,483  - compute on device: cuda:0
2023-10-06 20:41:12,483  - embedding storage: none
2023-10-06 20:41:12,483 ----------------------------------------------------------------------------------------------------
2023-10-06 20:41:12,483 Model training base path: "hmbench-ajmc/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1"
2023-10-06 20:41:12,483 ----------------------------------------------------------------------------------------------------
2023-10-06 20:41:12,483 ----------------------------------------------------------------------------------------------------
2023-10-06 20:41:12,483 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-06 20:41:23,097 epoch 1 - iter 27/275 - loss 3.22851574 - time (sec): 10.61 - samples/sec: 208.24 - lr: 0.000014 - momentum: 0.000000
2023-10-06 20:41:33,019 epoch 1 - iter 54/275 - loss 3.21829774 - time (sec): 20.53 - samples/sec: 213.98 - lr: 0.000029 - momentum: 0.000000
2023-10-06 20:41:42,867 epoch 1 - iter 81/275 - loss 3.19979413 - time (sec): 30.38 - samples/sec: 215.91 - lr: 0.000044 - momentum: 0.000000
2023-10-06 20:41:52,594 epoch 1 - iter 108/275 - loss 3.15653748 - time (sec): 40.11 - samples/sec: 215.83 - lr: 0.000058 - momentum: 0.000000
2023-10-06 20:42:03,379 epoch 1 - iter 135/275 - loss 3.06509180 - time (sec): 50.89 - samples/sec: 218.86 - lr: 0.000073 - momentum: 0.000000
2023-10-06 20:42:13,893 epoch 1 - iter 162/275 - loss 2.96221944 - time (sec): 61.41 - samples/sec: 219.38 - lr: 0.000088 - momentum: 0.000000
2023-10-06 20:42:24,478 epoch 1 - iter 189/275 - loss 2.85684614 - time (sec): 71.99 - samples/sec: 219.80 - lr: 0.000103 - momentum: 0.000000
2023-10-06 20:42:34,575 epoch 1 - iter 216/275 - loss 2.74750307 - time (sec): 82.09 - samples/sec: 219.59 - lr: 0.000117 - momentum: 0.000000
2023-10-06 20:42:44,911 epoch 1 - iter 243/275 - loss 2.63108071 - time (sec): 92.43 - samples/sec: 219.19 - lr: 0.000132 - momentum: 0.000000
2023-10-06 20:42:54,630 epoch 1 - iter 270/275 - loss 2.53023247 - time (sec): 102.15 - samples/sec: 218.06 - lr: 0.000147 - momentum: 0.000000
2023-10-06 20:42:56,909 ----------------------------------------------------------------------------------------------------
2023-10-06 20:42:56,910 EPOCH 1 done: loss 2.5051 - lr: 0.000147
2023-10-06 20:43:03,213 DEV : loss 1.1949074268341064 - f1-score (micro avg)  0.0
2023-10-06 20:43:03,219 ----------------------------------------------------------------------------------------------------
2023-10-06 20:43:13,749 epoch 2 - iter 27/275 - loss 1.09853432 - time (sec): 10.53 - samples/sec: 209.06 - lr: 0.000148 - momentum: 0.000000
2023-10-06 20:43:24,679 epoch 2 - iter 54/275 - loss 0.97325545 - time (sec): 21.46 - samples/sec: 208.26 - lr: 0.000147 - momentum: 0.000000
2023-10-06 20:43:34,960 epoch 2 - iter 81/275 - loss 0.96420986 - time (sec): 31.74 - samples/sec: 207.53 - lr: 0.000145 - momentum: 0.000000
2023-10-06 20:43:44,907 epoch 2 - iter 108/275 - loss 0.90817676 - time (sec): 41.69 - samples/sec: 204.38 - lr: 0.000144 - momentum: 0.000000
2023-10-06 20:43:55,205 epoch 2 - iter 135/275 - loss 0.89704867 - time (sec): 51.98 - samples/sec: 203.33 - lr: 0.000142 - momentum: 0.000000
2023-10-06 20:44:06,528 epoch 2 - iter 162/275 - loss 0.86146920 - time (sec): 63.31 - samples/sec: 204.97 - lr: 0.000140 - momentum: 0.000000
2023-10-06 20:44:17,829 epoch 2 - iter 189/275 - loss 0.82102558 - time (sec): 74.61 - samples/sec: 206.69 - lr: 0.000139 - momentum: 0.000000
2023-10-06 20:44:28,642 epoch 2 - iter 216/275 - loss 0.78226959 - time (sec): 85.42 - samples/sec: 207.29 - lr: 0.000137 - momentum: 0.000000
2023-10-06 20:44:39,384 epoch 2 - iter 243/275 - loss 0.74764483 - time (sec): 96.16 - samples/sec: 208.07 - lr: 0.000135 - momentum: 0.000000
2023-10-06 20:44:49,949 epoch 2 - iter 270/275 - loss 0.72320304 - time (sec): 106.73 - samples/sec: 208.87 - lr: 0.000134 - momentum: 0.000000
2023-10-06 20:44:51,899 ----------------------------------------------------------------------------------------------------
2023-10-06 20:44:51,899 EPOCH 2 done: loss 0.7199 - lr: 0.000134
2023-10-06 20:44:58,340 DEV : loss 0.43983766436576843 - f1-score (micro avg)  0.2969
2023-10-06 20:44:58,345 saving best model
2023-10-06 20:44:59,199 ----------------------------------------------------------------------------------------------------
2023-10-06 20:45:09,642 epoch 3 - iter 27/275 - loss 0.40940852 - time (sec): 10.44 - samples/sec: 212.23 - lr: 0.000132 - momentum: 0.000000
2023-10-06 20:45:20,822 epoch 3 - iter 54/275 - loss 0.38706250 - time (sec): 21.62 - samples/sec: 215.90 - lr: 0.000130 - momentum: 0.000000
2023-10-06 20:45:31,632 epoch 3 - iter 81/275 - loss 0.38027867 - time (sec): 32.43 - samples/sec: 216.40 - lr: 0.000129 - momentum: 0.000000
2023-10-06 20:45:42,720 epoch 3 - iter 108/275 - loss 0.37562173 - time (sec): 43.52 - samples/sec: 215.70 - lr: 0.000127 - momentum: 0.000000
2023-10-06 20:45:53,200 epoch 3 - iter 135/275 - loss 0.36728998 - time (sec): 54.00 - samples/sec: 214.06 - lr: 0.000125 - momentum: 0.000000
2023-10-06 20:46:04,063 epoch 3 - iter 162/275 - loss 0.36364722 - time (sec): 64.86 - samples/sec: 213.19 - lr: 0.000124 - momentum: 0.000000
2023-10-06 20:46:14,084 epoch 3 - iter 189/275 - loss 0.35221302 - time (sec): 74.88 - samples/sec: 211.14 - lr: 0.000122 - momentum: 0.000000
2023-10-06 20:46:24,319 epoch 3 - iter 216/275 - loss 0.34021923 - time (sec): 85.12 - samples/sec: 209.43 - lr: 0.000120 - momentum: 0.000000
2023-10-06 20:46:35,911 epoch 3 - iter 243/275 - loss 0.33081667 - time (sec): 96.71 - samples/sec: 210.07 - lr: 0.000119 - momentum: 0.000000
2023-10-06 20:46:45,972 epoch 3 - iter 270/275 - loss 0.31882959 - time (sec): 106.77 - samples/sec: 208.92 - lr: 0.000117 - momentum: 0.000000
2023-10-06 20:46:48,190 ----------------------------------------------------------------------------------------------------
2023-10-06 20:46:48,190 EPOCH 3 done: loss 0.3166 - lr: 0.000117
2023-10-06 20:46:54,743 DEV : loss 0.22956699132919312 - f1-score (micro avg)  0.7306
2023-10-06 20:46:54,748 saving best model
2023-10-06 20:46:59,225 ----------------------------------------------------------------------------------------------------
2023-10-06 20:47:11,123 epoch 4 - iter 27/275 - loss 0.18862218 - time (sec): 11.90 - samples/sec: 219.13 - lr: 0.000115 - momentum: 0.000000
2023-10-06 20:47:21,611 epoch 4 - iter 54/275 - loss 0.17081658 - time (sec): 22.38 - samples/sec: 212.87 - lr: 0.000114 - momentum: 0.000000
2023-10-06 20:47:31,893 epoch 4 - iter 81/275 - loss 0.17792602 - time (sec): 32.67 - samples/sec: 207.43 - lr: 0.000112 - momentum: 0.000000
2023-10-06 20:47:42,500 epoch 4 - iter 108/275 - loss 0.18147922 - time (sec): 43.27 - samples/sec: 208.49 - lr: 0.000110 - momentum: 0.000000
2023-10-06 20:47:53,725 epoch 4 - iter 135/275 - loss 0.18415122 - time (sec): 54.50 - samples/sec: 210.10 - lr: 0.000109 - momentum: 0.000000
2023-10-06 20:48:04,226 epoch 4 - iter 162/275 - loss 0.17880585 - time (sec): 65.00 - samples/sec: 208.51 - lr: 0.000107 - momentum: 0.000000
2023-10-06 20:48:15,156 epoch 4 - iter 189/275 - loss 0.17398312 - time (sec): 75.93 - samples/sec: 208.20 - lr: 0.000105 - momentum: 0.000000
2023-10-06 20:48:25,454 epoch 4 - iter 216/275 - loss 0.17691687 - time (sec): 86.23 - samples/sec: 208.11 - lr: 0.000104 - momentum: 0.000000
2023-10-06 20:48:35,926 epoch 4 - iter 243/275 - loss 0.17122472 - time (sec): 96.70 - samples/sec: 208.21 - lr: 0.000102 - momentum: 0.000000
2023-10-06 20:48:46,776 epoch 4 - iter 270/275 - loss 0.16701451 - time (sec): 107.55 - samples/sec: 207.35 - lr: 0.000101 - momentum: 0.000000
2023-10-06 20:48:48,883 ----------------------------------------------------------------------------------------------------
2023-10-06 20:48:48,883 EPOCH 4 done: loss 0.1661 - lr: 0.000101
2023-10-06 20:48:55,611 DEV : loss 0.14865034818649292 - f1-score (micro avg)  0.8125
2023-10-06 20:48:55,616 saving best model
2023-10-06 20:48:59,970 ----------------------------------------------------------------------------------------------------
2023-10-06 20:49:10,651 epoch 5 - iter 27/275 - loss 0.13835944 - time (sec): 10.68 - samples/sec: 204.71 - lr: 0.000099 - momentum: 0.000000
2023-10-06 20:49:21,407 epoch 5 - iter 54/275 - loss 0.12077603 - time (sec): 21.44 - samples/sec: 203.68 - lr: 0.000097 - momentum: 0.000000
2023-10-06 20:49:31,869 epoch 5 - iter 81/275 - loss 0.12505616 - time (sec): 31.90 - samples/sec: 205.13 - lr: 0.000095 - momentum: 0.000000
2023-10-06 20:49:43,704 epoch 5 - iter 108/275 - loss 0.11524283 - time (sec): 43.73 - samples/sec: 208.68 - lr: 0.000094 - momentum: 0.000000
2023-10-06 20:49:55,748 epoch 5 - iter 135/275 - loss 0.11047258 - time (sec): 55.78 - samples/sec: 209.28 - lr: 0.000092 - momentum: 0.000000
2023-10-06 20:50:06,657 epoch 5 - iter 162/275 - loss 0.10857292 - time (sec): 66.68 - samples/sec: 207.63 - lr: 0.000090 - momentum: 0.000000
2023-10-06 20:50:17,559 epoch 5 - iter 189/275 - loss 0.10346163 - time (sec): 77.59 - samples/sec: 207.55 - lr: 0.000089 - momentum: 0.000000
2023-10-06 20:50:28,156 epoch 5 - iter 216/275 - loss 0.10354840 - time (sec): 88.18 - samples/sec: 208.70 - lr: 0.000087 - momentum: 0.000000
2023-10-06 20:50:38,244 epoch 5 - iter 243/275 - loss 0.10378967 - time (sec): 98.27 - samples/sec: 207.14 - lr: 0.000086 - momentum: 0.000000
2023-10-06 20:50:48,462 epoch 5 - iter 270/275 - loss 0.09977533 - time (sec): 108.49 - samples/sec: 206.57 - lr: 0.000084 - momentum: 0.000000
2023-10-06 20:50:50,302 ----------------------------------------------------------------------------------------------------
2023-10-06 20:50:50,302 EPOCH 5 done: loss 0.1025 - lr: 0.000084
2023-10-06 20:50:57,063 DEV : loss 0.12752477824687958 - f1-score (micro avg)  0.8685
2023-10-06 20:50:57,069 saving best model
2023-10-06 20:51:01,781 ----------------------------------------------------------------------------------------------------
2023-10-06 20:51:12,742 epoch 6 - iter 27/275 - loss 0.07310406 - time (sec): 10.96 - samples/sec: 214.16 - lr: 0.000082 - momentum: 0.000000
2023-10-06 20:51:23,205 epoch 6 - iter 54/275 - loss 0.07407181 - time (sec): 21.42 - samples/sec: 209.41 - lr: 0.000080 - momentum: 0.000000
2023-10-06 20:51:33,976 epoch 6 - iter 81/275 - loss 0.06876723 - time (sec): 32.19 - samples/sec: 209.02 - lr: 0.000079 - momentum: 0.000000
2023-10-06 20:51:45,214 epoch 6 - iter 108/275 - loss 0.06624089 - time (sec): 43.43 - samples/sec: 207.59 - lr: 0.000077 - momentum: 0.000000
2023-10-06 20:51:56,261 epoch 6 - iter 135/275 - loss 0.06596938 - time (sec): 54.48 - samples/sec: 206.93 - lr: 0.000075 - momentum: 0.000000
2023-10-06 20:52:07,021 epoch 6 - iter 162/275 - loss 0.06566254 - time (sec): 65.24 - samples/sec: 206.49 - lr: 0.000074 - momentum: 0.000000
2023-10-06 20:52:18,206 epoch 6 - iter 189/275 - loss 0.07319061 - time (sec): 76.42 - samples/sec: 208.38 - lr: 0.000072 - momentum: 0.000000
2023-10-06 20:52:28,891 epoch 6 - iter 216/275 - loss 0.07175614 - time (sec): 87.11 - samples/sec: 207.72 - lr: 0.000071 - momentum: 0.000000
2023-10-06 20:52:39,707 epoch 6 - iter 243/275 - loss 0.07368640 - time (sec): 97.92 - samples/sec: 207.27 - lr: 0.000069 - momentum: 0.000000
2023-10-06 20:52:49,870 epoch 6 - iter 270/275 - loss 0.07386029 - time (sec): 108.09 - samples/sec: 206.37 - lr: 0.000067 - momentum: 0.000000
2023-10-06 20:52:52,149 ----------------------------------------------------------------------------------------------------
2023-10-06 20:52:52,150 EPOCH 6 done: loss 0.0737 - lr: 0.000067
2023-10-06 20:52:58,861 DEV : loss 0.1320181041955948 - f1-score (micro avg)  0.8616
2023-10-06 20:52:58,867 ----------------------------------------------------------------------------------------------------
2023-10-06 20:53:09,121 epoch 7 - iter 27/275 - loss 0.04497303 - time (sec): 10.25 - samples/sec: 199.75 - lr: 0.000065 - momentum: 0.000000
2023-10-06 20:53:19,415 epoch 7 - iter 54/275 - loss 0.04642627 - time (sec): 20.55 - samples/sec: 198.86 - lr: 0.000064 - momentum: 0.000000
2023-10-06 20:53:30,703 epoch 7 - iter 81/275 - loss 0.05601185 - time (sec): 31.83 - samples/sec: 203.08 - lr: 0.000062 - momentum: 0.000000
2023-10-06 20:53:41,853 epoch 7 - iter 108/275 - loss 0.04747209 - time (sec): 42.98 - samples/sec: 207.33 - lr: 0.000060 - momentum: 0.000000
2023-10-06 20:53:53,189 epoch 7 - iter 135/275 - loss 0.04916826 - time (sec): 54.32 - samples/sec: 207.47 - lr: 0.000059 - momentum: 0.000000
2023-10-06 20:54:03,634 epoch 7 - iter 162/275 - loss 0.05453263 - time (sec): 64.77 - samples/sec: 205.22 - lr: 0.000057 - momentum: 0.000000
2023-10-06 20:54:14,657 epoch 7 - iter 189/275 - loss 0.05089647 - time (sec): 75.79 - samples/sec: 205.49 - lr: 0.000056 - momentum: 0.000000
2023-10-06 20:54:25,774 epoch 7 - iter 216/275 - loss 0.05096154 - time (sec): 86.91 - samples/sec: 205.92 - lr: 0.000054 - momentum: 0.000000
2023-10-06 20:54:37,052 epoch 7 - iter 243/275 - loss 0.05331658 - time (sec): 98.18 - samples/sec: 207.30 - lr: 0.000052 - momentum: 0.000000
2023-10-06 20:54:47,632 epoch 7 - iter 270/275 - loss 0.05694342 - time (sec): 108.76 - samples/sec: 206.60 - lr: 0.000051 - momentum: 0.000000
2023-10-06 20:54:49,366 ----------------------------------------------------------------------------------------------------
2023-10-06 20:54:49,366 EPOCH 7 done: loss 0.0568 - lr: 0.000051
2023-10-06 20:54:56,092 DEV : loss 0.12154703587293625 - f1-score (micro avg)  0.8695
2023-10-06 20:54:56,097 saving best model
2023-10-06 20:55:00,483 ----------------------------------------------------------------------------------------------------
2023-10-06 20:55:10,631 epoch 8 - iter 27/275 - loss 0.04565948 - time (sec): 10.15 - samples/sec: 191.40 - lr: 0.000049 - momentum: 0.000000
2023-10-06 20:55:21,037 epoch 8 - iter 54/275 - loss 0.06174029 - time (sec): 20.55 - samples/sec: 201.59 - lr: 0.000047 - momentum: 0.000000
2023-10-06 20:55:31,987 epoch 8 - iter 81/275 - loss 0.05427538 - time (sec): 31.50 - samples/sec: 205.38 - lr: 0.000045 - momentum: 0.000000
2023-10-06 20:55:42,945 epoch 8 - iter 108/275 - loss 0.05040491 - time (sec): 42.46 - samples/sec: 206.34 - lr: 0.000044 - momentum: 0.000000
2023-10-06 20:55:53,321 epoch 8 - iter 135/275 - loss 0.04921226 - time (sec): 52.84 - samples/sec: 203.27 - lr: 0.000042 - momentum: 0.000000
2023-10-06 20:56:04,857 epoch 8 - iter 162/275 - loss 0.05030560 - time (sec): 64.37 - samples/sec: 205.65 - lr: 0.000041 - momentum: 0.000000
2023-10-06 20:56:14,975 epoch 8 - iter 189/275 - loss 0.04905001 - time (sec): 74.49 - samples/sec: 205.13 - lr: 0.000039 - momentum: 0.000000
2023-10-06 20:56:26,443 epoch 8 - iter 216/275 - loss 0.04739645 - time (sec): 85.96 - samples/sec: 206.03 - lr: 0.000037 - momentum: 0.000000
2023-10-06 20:56:38,162 epoch 8 - iter 243/275 - loss 0.04880165 - time (sec): 97.68 - samples/sec: 206.19 - lr: 0.000036 - momentum: 0.000000
2023-10-06 20:56:48,961 epoch 8 - iter 270/275 - loss 0.04732420 - time (sec): 108.48 - samples/sec: 205.91 - lr: 0.000034 - momentum: 0.000000
2023-10-06 20:56:51,030 ----------------------------------------------------------------------------------------------------
2023-10-06 20:56:51,030 EPOCH 8 done: loss 0.0465 - lr: 0.000034
2023-10-06 20:56:57,714 DEV : loss 0.12373079359531403 - f1-score (micro avg)  0.8668
2023-10-06 20:56:57,719 ----------------------------------------------------------------------------------------------------
2023-10-06 20:57:08,225 epoch 9 - iter 27/275 - loss 0.02881863 - time (sec): 10.50 - samples/sec: 204.50 - lr: 0.000032 - momentum: 0.000000
2023-10-06 20:57:18,849 epoch 9 - iter 54/275 - loss 0.04766868 - time (sec): 21.13 - samples/sec: 204.81 - lr: 0.000030 - momentum: 0.000000
2023-10-06 20:57:29,593 epoch 9 - iter 81/275 - loss 0.04945213 - time (sec): 31.87 - samples/sec: 204.48 - lr: 0.000029 - momentum: 0.000000
2023-10-06 20:57:40,917 epoch 9 - iter 108/275 - loss 0.04948668 - time (sec): 43.20 - samples/sec: 204.81 - lr: 0.000027 - momentum: 0.000000
2023-10-06 20:57:51,779 epoch 9 - iter 135/275 - loss 0.05271936 - time (sec): 54.06 - samples/sec: 205.15 - lr: 0.000026 - momentum: 0.000000
2023-10-06 20:58:02,196 epoch 9 - iter 162/275 - loss 0.05315498 - time (sec): 64.47 - samples/sec: 205.43 - lr: 0.000024 - momentum: 0.000000
2023-10-06 20:58:14,113 epoch 9 - iter 189/275 - loss 0.04591171 - time (sec): 76.39 - samples/sec: 206.84 - lr: 0.000022 - momentum: 0.000000
2023-10-06 20:58:24,875 epoch 9 - iter 216/275 - loss 0.04283486 - time (sec): 87.15 - samples/sec: 206.73 - lr: 0.000021 - momentum: 0.000000
2023-10-06 20:58:35,090 epoch 9 - iter 243/275 - loss 0.03967070 - time (sec): 97.37 - samples/sec: 205.61 - lr: 0.000019 - momentum: 0.000000
2023-10-06 20:58:45,978 epoch 9 - iter 270/275 - loss 0.04036106 - time (sec): 108.26 - samples/sec: 206.32 - lr: 0.000017 - momentum: 0.000000
2023-10-06 20:58:47,978 ----------------------------------------------------------------------------------------------------
2023-10-06 20:58:47,978 EPOCH 9 done: loss 0.0402 - lr: 0.000017
2023-10-06 20:58:54,661 DEV : loss 0.126312717795372 - f1-score (micro avg)  0.8752
2023-10-06 20:58:54,667 saving best model
2023-10-06 20:58:59,057 ----------------------------------------------------------------------------------------------------
2023-10-06 20:59:10,177 epoch 10 - iter 27/275 - loss 0.06065561 - time (sec): 11.12 - samples/sec: 204.36 - lr: 0.000015 - momentum: 0.000000
2023-10-06 20:59:20,842 epoch 10 - iter 54/275 - loss 0.05483908 - time (sec): 21.78 - samples/sec: 203.50 - lr: 0.000014 - momentum: 0.000000
2023-10-06 20:59:31,444 epoch 10 - iter 81/275 - loss 0.04534089 - time (sec): 32.38 - samples/sec: 205.00 - lr: 0.000012 - momentum: 0.000000
2023-10-06 20:59:42,516 epoch 10 - iter 108/275 - loss 0.04445337 - time (sec): 43.46 - samples/sec: 206.32 - lr: 0.000011 - momentum: 0.000000
2023-10-06 20:59:53,025 epoch 10 - iter 135/275 - loss 0.03812986 - time (sec): 53.97 - samples/sec: 204.48 - lr: 0.000009 - momentum: 0.000000
2023-10-06 21:00:03,647 epoch 10 - iter 162/275 - loss 0.04007420 - time (sec): 64.59 - samples/sec: 204.17 - lr: 0.000007 - momentum: 0.000000
2023-10-06 21:00:14,653 epoch 10 - iter 189/275 - loss 0.03835348 - time (sec): 75.59 - samples/sec: 204.39 - lr: 0.000006 - momentum: 0.000000
2023-10-06 21:00:25,689 epoch 10 - iter 216/275 - loss 0.03808426 - time (sec): 86.63 - samples/sec: 205.10 - lr: 0.000004 - momentum: 0.000000
2023-10-06 21:00:36,553 epoch 10 - iter 243/275 - loss 0.03670371 - time (sec): 97.49 - samples/sec: 205.86 - lr: 0.000002 - momentum: 0.000000
2023-10-06 21:00:47,225 epoch 10 - iter 270/275 - loss 0.03786440 - time (sec): 108.17 - samples/sec: 206.28 - lr: 0.000001 - momentum: 0.000000
2023-10-06 21:00:49,405 ----------------------------------------------------------------------------------------------------
2023-10-06 21:00:49,405 EPOCH 10 done: loss 0.0376 - lr: 0.000001
2023-10-06 21:00:56,101 DEV : loss 0.12622681260108948 - f1-score (micro avg)  0.8786
2023-10-06 21:00:56,107 saving best model
2023-10-06 21:01:01,443 ----------------------------------------------------------------------------------------------------
2023-10-06 21:01:01,445 Loading model from best epoch ...
2023-10-06 21:01:06,293 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-06 21:01:13,499 
Results:
- F-score (micro) 0.8903
- F-score (macro) 0.6643
- Accuracy 0.8197

By class:
              precision    recall  f1-score   support

       scope     0.8977    0.8977    0.8977       176
        pers     0.9154    0.9297    0.9225       128
        work     0.8182    0.8514    0.8344        74
         loc     1.0000    0.5000    0.6667         2
      object     0.0000    0.0000    0.0000         2

   micro avg     0.8880    0.8927    0.8903       382
   macro avg     0.7263    0.6358    0.6643       382
weighted avg     0.8841    0.8927    0.8879       382

2023-10-06 21:01:13,499 ----------------------------------------------------------------------------------------------------