File size: 24,158 Bytes
b576412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
2023-10-18 14:33:33,455 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:33,456 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 14:33:33,456 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:33,456 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-18 14:33:33,456 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:33,456 Train:  1100 sentences
2023-10-18 14:33:33,456         (train_with_dev=False, train_with_test=False)
2023-10-18 14:33:33,456 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:33,456 Training Params:
2023-10-18 14:33:33,456  - learning_rate: "3e-05" 
2023-10-18 14:33:33,456  - mini_batch_size: "4"
2023-10-18 14:33:33,456  - max_epochs: "10"
2023-10-18 14:33:33,457  - shuffle: "True"
2023-10-18 14:33:33,457 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:33,457 Plugins:
2023-10-18 14:33:33,457  - TensorboardLogger
2023-10-18 14:33:33,457  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 14:33:33,457 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:33,457 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 14:33:33,457  - metric: "('micro avg', 'f1-score')"
2023-10-18 14:33:33,457 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:33,457 Computation:
2023-10-18 14:33:33,457  - compute on device: cuda:0
2023-10-18 14:33:33,457  - embedding storage: none
2023-10-18 14:33:33,457 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:33,457 Model training base path: "hmbench-ajmc/de-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-18 14:33:33,457 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:33,457 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:33,457 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 14:33:34,901 epoch 1 - iter 27/275 - loss 3.95807539 - time (sec): 1.44 - samples/sec: 1696.55 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:33:35,335 epoch 1 - iter 54/275 - loss 4.02684268 - time (sec): 1.88 - samples/sec: 2500.12 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:33:35,764 epoch 1 - iter 81/275 - loss 3.93498797 - time (sec): 2.31 - samples/sec: 2931.71 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:33:36,175 epoch 1 - iter 108/275 - loss 3.82505787 - time (sec): 2.72 - samples/sec: 3244.87 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:33:36,591 epoch 1 - iter 135/275 - loss 3.62952957 - time (sec): 3.13 - samples/sec: 3618.88 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:33:37,001 epoch 1 - iter 162/275 - loss 3.41964347 - time (sec): 3.54 - samples/sec: 3831.26 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:33:37,399 epoch 1 - iter 189/275 - loss 3.22624157 - time (sec): 3.94 - samples/sec: 4001.92 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:33:37,800 epoch 1 - iter 216/275 - loss 3.00227363 - time (sec): 4.34 - samples/sec: 4182.55 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:33:38,209 epoch 1 - iter 243/275 - loss 2.81798890 - time (sec): 4.75 - samples/sec: 4237.42 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:33:38,605 epoch 1 - iter 270/275 - loss 2.66322507 - time (sec): 5.15 - samples/sec: 4342.81 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:33:38,682 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:38,682 EPOCH 1 done: loss 2.6324 - lr: 0.000029
2023-10-18 14:33:38,943 DEV : loss 0.8727257251739502 - f1-score (micro avg)  0.0
2023-10-18 14:33:38,947 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:39,348 epoch 2 - iter 27/275 - loss 0.95414304 - time (sec): 0.40 - samples/sec: 6156.96 - lr: 0.000030 - momentum: 0.000000
2023-10-18 14:33:39,760 epoch 2 - iter 54/275 - loss 1.00539324 - time (sec): 0.81 - samples/sec: 5799.67 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:33:40,168 epoch 2 - iter 81/275 - loss 1.03670034 - time (sec): 1.22 - samples/sec: 5747.24 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:33:40,578 epoch 2 - iter 108/275 - loss 1.01175848 - time (sec): 1.63 - samples/sec: 5675.91 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:33:40,990 epoch 2 - iter 135/275 - loss 1.00671150 - time (sec): 2.04 - samples/sec: 5516.96 - lr: 0.000028 - momentum: 0.000000
2023-10-18 14:33:41,395 epoch 2 - iter 162/275 - loss 0.97791266 - time (sec): 2.45 - samples/sec: 5565.61 - lr: 0.000028 - momentum: 0.000000
2023-10-18 14:33:41,806 epoch 2 - iter 189/275 - loss 0.95352470 - time (sec): 2.86 - samples/sec: 5565.32 - lr: 0.000028 - momentum: 0.000000
2023-10-18 14:33:42,205 epoch 2 - iter 216/275 - loss 0.93400324 - time (sec): 3.26 - samples/sec: 5490.92 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:33:42,618 epoch 2 - iter 243/275 - loss 0.90908336 - time (sec): 3.67 - samples/sec: 5528.79 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:33:43,013 epoch 2 - iter 270/275 - loss 0.89179470 - time (sec): 4.07 - samples/sec: 5493.60 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:33:43,086 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:43,086 EPOCH 2 done: loss 0.8891 - lr: 0.000027
2023-10-18 14:33:43,458 DEV : loss 0.690082848072052 - f1-score (micro avg)  0.0
2023-10-18 14:33:43,465 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:43,868 epoch 3 - iter 27/275 - loss 0.79786830 - time (sec): 0.40 - samples/sec: 5628.57 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:33:44,271 epoch 3 - iter 54/275 - loss 0.73841948 - time (sec): 0.81 - samples/sec: 5612.54 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:33:44,684 epoch 3 - iter 81/275 - loss 0.76137491 - time (sec): 1.22 - samples/sec: 5654.41 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:33:45,222 epoch 3 - iter 108/275 - loss 0.72902040 - time (sec): 1.76 - samples/sec: 5272.71 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:33:45,637 epoch 3 - iter 135/275 - loss 0.73347067 - time (sec): 2.17 - samples/sec: 5275.39 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:33:46,032 epoch 3 - iter 162/275 - loss 0.71535696 - time (sec): 2.57 - samples/sec: 5337.01 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:33:46,451 epoch 3 - iter 189/275 - loss 0.70609375 - time (sec): 2.99 - samples/sec: 5330.98 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:33:46,863 epoch 3 - iter 216/275 - loss 0.70424713 - time (sec): 3.40 - samples/sec: 5323.43 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:33:47,271 epoch 3 - iter 243/275 - loss 0.70311682 - time (sec): 3.81 - samples/sec: 5323.86 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:33:47,675 epoch 3 - iter 270/275 - loss 0.70164780 - time (sec): 4.21 - samples/sec: 5333.31 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:33:47,745 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:47,746 EPOCH 3 done: loss 0.6995 - lr: 0.000023
2023-10-18 14:33:48,107 DEV : loss 0.5440794825553894 - f1-score (micro avg)  0.1311
2023-10-18 14:33:48,111 saving best model
2023-10-18 14:33:48,147 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:48,544 epoch 4 - iter 27/275 - loss 0.68168972 - time (sec): 0.40 - samples/sec: 5570.72 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:33:48,938 epoch 4 - iter 54/275 - loss 0.64810506 - time (sec): 0.79 - samples/sec: 5518.00 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:33:49,349 epoch 4 - iter 81/275 - loss 0.61425076 - time (sec): 1.20 - samples/sec: 5321.55 - lr: 0.000022 - momentum: 0.000000
2023-10-18 14:33:49,753 epoch 4 - iter 108/275 - loss 0.63426737 - time (sec): 1.61 - samples/sec: 5357.68 - lr: 0.000022 - momentum: 0.000000
2023-10-18 14:33:50,162 epoch 4 - iter 135/275 - loss 0.61651865 - time (sec): 2.01 - samples/sec: 5551.61 - lr: 0.000022 - momentum: 0.000000
2023-10-18 14:33:50,569 epoch 4 - iter 162/275 - loss 0.60018412 - time (sec): 2.42 - samples/sec: 5531.42 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:33:50,985 epoch 4 - iter 189/275 - loss 0.59771216 - time (sec): 2.84 - samples/sec: 5518.53 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:33:51,401 epoch 4 - iter 216/275 - loss 0.58918031 - time (sec): 3.25 - samples/sec: 5523.57 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:33:51,811 epoch 4 - iter 243/275 - loss 0.58391359 - time (sec): 3.66 - samples/sec: 5518.71 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:33:52,214 epoch 4 - iter 270/275 - loss 0.57886356 - time (sec): 4.07 - samples/sec: 5491.47 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:33:52,293 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:52,293 EPOCH 4 done: loss 0.5788 - lr: 0.000020
2023-10-18 14:33:52,651 DEV : loss 0.446980744600296 - f1-score (micro avg)  0.3195
2023-10-18 14:33:52,655 saving best model
2023-10-18 14:33:52,692 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:53,118 epoch 5 - iter 27/275 - loss 0.47038975 - time (sec): 0.42 - samples/sec: 6169.87 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:33:53,533 epoch 5 - iter 54/275 - loss 0.49156303 - time (sec): 0.84 - samples/sec: 5549.68 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:33:53,934 epoch 5 - iter 81/275 - loss 0.50829332 - time (sec): 1.24 - samples/sec: 5562.38 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:33:54,345 epoch 5 - iter 108/275 - loss 0.51783415 - time (sec): 1.65 - samples/sec: 5661.14 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:33:54,754 epoch 5 - iter 135/275 - loss 0.52054288 - time (sec): 2.06 - samples/sec: 5532.59 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:33:55,152 epoch 5 - iter 162/275 - loss 0.52045580 - time (sec): 2.46 - samples/sec: 5529.64 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:33:55,550 epoch 5 - iter 189/275 - loss 0.52141928 - time (sec): 2.86 - samples/sec: 5513.83 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:33:55,986 epoch 5 - iter 216/275 - loss 0.52400933 - time (sec): 3.29 - samples/sec: 5438.15 - lr: 0.000017 - momentum: 0.000000
2023-10-18 14:33:56,388 epoch 5 - iter 243/275 - loss 0.51808409 - time (sec): 3.69 - samples/sec: 5417.92 - lr: 0.000017 - momentum: 0.000000
2023-10-18 14:33:56,801 epoch 5 - iter 270/275 - loss 0.51933400 - time (sec): 4.11 - samples/sec: 5446.28 - lr: 0.000017 - momentum: 0.000000
2023-10-18 14:33:56,874 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:56,874 EPOCH 5 done: loss 0.5164 - lr: 0.000017
2023-10-18 14:33:57,240 DEV : loss 0.3829083740711212 - f1-score (micro avg)  0.4412
2023-10-18 14:33:57,244 saving best model
2023-10-18 14:33:57,280 ----------------------------------------------------------------------------------------------------
2023-10-18 14:33:57,671 epoch 6 - iter 27/275 - loss 0.60568622 - time (sec): 0.39 - samples/sec: 5055.69 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:33:58,062 epoch 6 - iter 54/275 - loss 0.51501565 - time (sec): 0.78 - samples/sec: 5417.32 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:33:58,466 epoch 6 - iter 81/275 - loss 0.52007717 - time (sec): 1.19 - samples/sec: 5542.45 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:33:58,875 epoch 6 - iter 108/275 - loss 0.50831316 - time (sec): 1.59 - samples/sec: 5541.06 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:33:59,277 epoch 6 - iter 135/275 - loss 0.48824914 - time (sec): 2.00 - samples/sec: 5482.41 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:33:59,688 epoch 6 - iter 162/275 - loss 0.48448898 - time (sec): 2.41 - samples/sec: 5579.49 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:34:00,104 epoch 6 - iter 189/275 - loss 0.47906986 - time (sec): 2.82 - samples/sec: 5542.73 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:34:00,518 epoch 6 - iter 216/275 - loss 0.47103482 - time (sec): 3.24 - samples/sec: 5512.00 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:34:00,925 epoch 6 - iter 243/275 - loss 0.47641128 - time (sec): 3.64 - samples/sec: 5565.64 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:34:01,335 epoch 6 - iter 270/275 - loss 0.47212454 - time (sec): 4.05 - samples/sec: 5528.51 - lr: 0.000013 - momentum: 0.000000
2023-10-18 14:34:01,411 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:01,411 EPOCH 6 done: loss 0.4711 - lr: 0.000013
2023-10-18 14:34:01,779 DEV : loss 0.35361379384994507 - f1-score (micro avg)  0.5
2023-10-18 14:34:01,783 saving best model
2023-10-18 14:34:01,818 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:02,230 epoch 7 - iter 27/275 - loss 0.51653193 - time (sec): 0.41 - samples/sec: 5057.55 - lr: 0.000013 - momentum: 0.000000
2023-10-18 14:34:02,649 epoch 7 - iter 54/275 - loss 0.47829517 - time (sec): 0.83 - samples/sec: 5139.10 - lr: 0.000013 - momentum: 0.000000
2023-10-18 14:34:03,056 epoch 7 - iter 81/275 - loss 0.47507434 - time (sec): 1.24 - samples/sec: 5124.10 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:34:03,467 epoch 7 - iter 108/275 - loss 0.46524549 - time (sec): 1.65 - samples/sec: 5065.57 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:34:03,840 epoch 7 - iter 135/275 - loss 0.45425778 - time (sec): 2.02 - samples/sec: 5284.03 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:34:04,214 epoch 7 - iter 162/275 - loss 0.44426560 - time (sec): 2.40 - samples/sec: 5469.89 - lr: 0.000011 - momentum: 0.000000
2023-10-18 14:34:04,589 epoch 7 - iter 189/275 - loss 0.45075310 - time (sec): 2.77 - samples/sec: 5577.78 - lr: 0.000011 - momentum: 0.000000
2023-10-18 14:34:04,963 epoch 7 - iter 216/275 - loss 0.44430239 - time (sec): 3.14 - samples/sec: 5653.18 - lr: 0.000011 - momentum: 0.000000
2023-10-18 14:34:05,336 epoch 7 - iter 243/275 - loss 0.43835253 - time (sec): 3.52 - samples/sec: 5736.85 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:34:05,707 epoch 7 - iter 270/275 - loss 0.44103139 - time (sec): 3.89 - samples/sec: 5772.09 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:34:05,774 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:05,774 EPOCH 7 done: loss 0.4392 - lr: 0.000010
2023-10-18 14:34:06,139 DEV : loss 0.3377951979637146 - f1-score (micro avg)  0.5332
2023-10-18 14:34:06,143 saving best model
2023-10-18 14:34:06,177 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:06,542 epoch 8 - iter 27/275 - loss 0.46120490 - time (sec): 0.36 - samples/sec: 6245.19 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:34:06,916 epoch 8 - iter 54/275 - loss 0.43711143 - time (sec): 0.74 - samples/sec: 5782.83 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:34:07,322 epoch 8 - iter 81/275 - loss 0.42993624 - time (sec): 1.14 - samples/sec: 5625.05 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:34:07,747 epoch 8 - iter 108/275 - loss 0.43798123 - time (sec): 1.57 - samples/sec: 5618.59 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:34:08,155 epoch 8 - iter 135/275 - loss 0.41689337 - time (sec): 1.98 - samples/sec: 5691.67 - lr: 0.000008 - momentum: 0.000000
2023-10-18 14:34:08,558 epoch 8 - iter 162/275 - loss 0.40611288 - time (sec): 2.38 - samples/sec: 5626.24 - lr: 0.000008 - momentum: 0.000000
2023-10-18 14:34:08,978 epoch 8 - iter 189/275 - loss 0.41126376 - time (sec): 2.80 - samples/sec: 5564.85 - lr: 0.000008 - momentum: 0.000000
2023-10-18 14:34:09,372 epoch 8 - iter 216/275 - loss 0.41874573 - time (sec): 3.19 - samples/sec: 5530.94 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:34:09,785 epoch 8 - iter 243/275 - loss 0.42031093 - time (sec): 3.61 - samples/sec: 5527.18 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:34:10,200 epoch 8 - iter 270/275 - loss 0.41959777 - time (sec): 4.02 - samples/sec: 5558.55 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:34:10,283 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:10,284 EPOCH 8 done: loss 0.4179 - lr: 0.000007
2023-10-18 14:34:10,653 DEV : loss 0.3256723880767822 - f1-score (micro avg)  0.5433
2023-10-18 14:34:10,657 saving best model
2023-10-18 14:34:10,693 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:11,121 epoch 9 - iter 27/275 - loss 0.40590119 - time (sec): 0.43 - samples/sec: 5380.00 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:34:11,522 epoch 9 - iter 54/275 - loss 0.41779296 - time (sec): 0.83 - samples/sec: 5553.98 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:34:11,937 epoch 9 - iter 81/275 - loss 0.41452508 - time (sec): 1.24 - samples/sec: 5468.20 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:34:12,330 epoch 9 - iter 108/275 - loss 0.43171475 - time (sec): 1.64 - samples/sec: 5435.80 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:34:12,730 epoch 9 - iter 135/275 - loss 0.44049718 - time (sec): 2.04 - samples/sec: 5420.83 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:34:13,137 epoch 9 - iter 162/275 - loss 0.43920082 - time (sec): 2.44 - samples/sec: 5429.86 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:34:13,545 epoch 9 - iter 189/275 - loss 0.42865859 - time (sec): 2.85 - samples/sec: 5430.42 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:34:13,961 epoch 9 - iter 216/275 - loss 0.42145289 - time (sec): 3.27 - samples/sec: 5461.56 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:34:14,364 epoch 9 - iter 243/275 - loss 0.42176964 - time (sec): 3.67 - samples/sec: 5563.73 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:34:14,763 epoch 9 - iter 270/275 - loss 0.41965621 - time (sec): 4.07 - samples/sec: 5493.05 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:34:14,840 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:14,841 EPOCH 9 done: loss 0.4216 - lr: 0.000003
2023-10-18 14:34:15,212 DEV : loss 0.320939838886261 - f1-score (micro avg)  0.5464
2023-10-18 14:34:15,216 saving best model
2023-10-18 14:34:15,250 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:15,638 epoch 10 - iter 27/275 - loss 0.35279704 - time (sec): 0.39 - samples/sec: 5775.64 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:34:16,040 epoch 10 - iter 54/275 - loss 0.39298011 - time (sec): 0.79 - samples/sec: 5759.75 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:34:16,440 epoch 10 - iter 81/275 - loss 0.40468269 - time (sec): 1.19 - samples/sec: 5509.45 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:34:16,854 epoch 10 - iter 108/275 - loss 0.39740579 - time (sec): 1.60 - samples/sec: 5443.48 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:34:17,257 epoch 10 - iter 135/275 - loss 0.40381656 - time (sec): 2.01 - samples/sec: 5498.53 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:34:17,655 epoch 10 - iter 162/275 - loss 0.41005123 - time (sec): 2.40 - samples/sec: 5561.44 - lr: 0.000001 - momentum: 0.000000
2023-10-18 14:34:18,067 epoch 10 - iter 189/275 - loss 0.42288410 - time (sec): 2.82 - samples/sec: 5606.36 - lr: 0.000001 - momentum: 0.000000
2023-10-18 14:34:18,477 epoch 10 - iter 216/275 - loss 0.41179863 - time (sec): 3.23 - samples/sec: 5613.41 - lr: 0.000001 - momentum: 0.000000
2023-10-18 14:34:18,883 epoch 10 - iter 243/275 - loss 0.40928966 - time (sec): 3.63 - samples/sec: 5552.26 - lr: 0.000000 - momentum: 0.000000
2023-10-18 14:34:19,287 epoch 10 - iter 270/275 - loss 0.40508631 - time (sec): 4.04 - samples/sec: 5543.71 - lr: 0.000000 - momentum: 0.000000
2023-10-18 14:34:19,371 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:19,371 EPOCH 10 done: loss 0.4038 - lr: 0.000000
2023-10-18 14:34:19,737 DEV : loss 0.3195188045501709 - f1-score (micro avg)  0.5483
2023-10-18 14:34:19,741 saving best model
2023-10-18 14:34:19,802 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:19,803 Loading model from best epoch ...
2023-10-18 14:34:19,882 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-18 14:34:20,162 
Results:
- F-score (micro) 0.587
- F-score (macro) 0.3506
- Accuracy 0.4269

By class:
              precision    recall  f1-score   support

       scope     0.5707    0.5966    0.5833       176
        pers     0.8452    0.5547    0.6698       128
        work     0.4651    0.5405    0.5000        74
      object     0.0000    0.0000    0.0000         2
         loc     0.0000    0.0000    0.0000         2

   micro avg     0.6102    0.5654    0.5870       382
   macro avg     0.3762    0.3384    0.3506       382
weighted avg     0.6362    0.5654    0.5901       382

2023-10-18 14:34:20,162 ----------------------------------------------------------------------------------------------------