File size: 26,624 Bytes
e19750b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
2024-03-26 16:25:03,464 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:03,464 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 16:25:03,464 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:03,464 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 16:25:03,464 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:03,464 Train: 758 sentences
2024-03-26 16:25:03,464 (train_with_dev=False, train_with_test=False)
2024-03-26 16:25:03,464 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:03,464 Training Params:
2024-03-26 16:25:03,464 - learning_rate: "5e-05"
2024-03-26 16:25:03,464 - mini_batch_size: "16"
2024-03-26 16:25:03,464 - max_epochs: "10"
2024-03-26 16:25:03,464 - shuffle: "True"
2024-03-26 16:25:03,464 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:03,464 Plugins:
2024-03-26 16:25:03,464 - TensorboardLogger
2024-03-26 16:25:03,464 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 16:25:03,464 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:03,464 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 16:25:03,464 - metric: "('micro avg', 'f1-score')"
2024-03-26 16:25:03,464 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:03,465 Computation:
2024-03-26 16:25:03,465 - compute on device: cuda:0
2024-03-26 16:25:03,465 - embedding storage: none
2024-03-26 16:25:03,465 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:03,465 Model training base path: "flair-co-funer-german_dbmdz_bert_base-bs16-e10-lr5e-05-5"
2024-03-26 16:25:03,465 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:03,465 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:03,465 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 16:25:04,936 epoch 1 - iter 4/48 - loss 3.32824977 - time (sec): 1.47 - samples/sec: 1782.07 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:25:07,626 epoch 1 - iter 8/48 - loss 3.23808475 - time (sec): 4.16 - samples/sec: 1462.56 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:25:09,455 epoch 1 - iter 12/48 - loss 3.10768286 - time (sec): 5.99 - samples/sec: 1487.04 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:25:11,000 epoch 1 - iter 16/48 - loss 2.93068015 - time (sec): 7.54 - samples/sec: 1596.58 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:25:13,124 epoch 1 - iter 20/48 - loss 2.77783855 - time (sec): 9.66 - samples/sec: 1561.09 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:25:15,829 epoch 1 - iter 24/48 - loss 2.60744422 - time (sec): 12.36 - samples/sec: 1492.15 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:25:17,441 epoch 1 - iter 28/48 - loss 2.48773735 - time (sec): 13.98 - samples/sec: 1501.59 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:25:19,517 epoch 1 - iter 32/48 - loss 2.36230783 - time (sec): 16.05 - samples/sec: 1497.52 - lr: 0.000032 - momentum: 0.000000
2024-03-26 16:25:21,053 epoch 1 - iter 36/48 - loss 2.25916147 - time (sec): 17.59 - samples/sec: 1518.01 - lr: 0.000036 - momentum: 0.000000
2024-03-26 16:25:23,825 epoch 1 - iter 40/48 - loss 2.12584608 - time (sec): 20.36 - samples/sec: 1468.80 - lr: 0.000041 - momentum: 0.000000
2024-03-26 16:25:25,011 epoch 1 - iter 44/48 - loss 2.03282822 - time (sec): 21.55 - samples/sec: 1491.81 - lr: 0.000045 - momentum: 0.000000
2024-03-26 16:25:26,833 epoch 1 - iter 48/48 - loss 1.94896514 - time (sec): 23.37 - samples/sec: 1475.16 - lr: 0.000049 - momentum: 0.000000
2024-03-26 16:25:26,834 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:26,834 EPOCH 1 done: loss 1.9490 - lr: 0.000049
2024-03-26 16:25:27,831 DEV : loss 0.5537716746330261 - f1-score (micro avg) 0.617
2024-03-26 16:25:27,832 saving best model
2024-03-26 16:25:28,134 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:30,836 epoch 2 - iter 4/48 - loss 0.60539991 - time (sec): 2.70 - samples/sec: 1277.98 - lr: 0.000050 - momentum: 0.000000
2024-03-26 16:25:32,689 epoch 2 - iter 8/48 - loss 0.58912879 - time (sec): 4.55 - samples/sec: 1345.54 - lr: 0.000049 - momentum: 0.000000
2024-03-26 16:25:34,585 epoch 2 - iter 12/48 - loss 0.55105161 - time (sec): 6.45 - samples/sec: 1382.99 - lr: 0.000049 - momentum: 0.000000
2024-03-26 16:25:37,257 epoch 2 - iter 16/48 - loss 0.50129401 - time (sec): 9.12 - samples/sec: 1387.23 - lr: 0.000048 - momentum: 0.000000
2024-03-26 16:25:38,639 epoch 2 - iter 20/48 - loss 0.48407514 - time (sec): 10.50 - samples/sec: 1426.22 - lr: 0.000048 - momentum: 0.000000
2024-03-26 16:25:41,459 epoch 2 - iter 24/48 - loss 0.45190843 - time (sec): 13.32 - samples/sec: 1343.23 - lr: 0.000047 - momentum: 0.000000
2024-03-26 16:25:43,068 epoch 2 - iter 28/48 - loss 0.45024089 - time (sec): 14.93 - samples/sec: 1376.78 - lr: 0.000047 - momentum: 0.000000
2024-03-26 16:25:45,085 epoch 2 - iter 32/48 - loss 0.42875986 - time (sec): 16.95 - samples/sec: 1369.76 - lr: 0.000046 - momentum: 0.000000
2024-03-26 16:25:46,851 epoch 2 - iter 36/48 - loss 0.42459097 - time (sec): 18.72 - samples/sec: 1400.34 - lr: 0.000046 - momentum: 0.000000
2024-03-26 16:25:49,222 epoch 2 - iter 40/48 - loss 0.42355452 - time (sec): 21.09 - samples/sec: 1388.11 - lr: 0.000046 - momentum: 0.000000
2024-03-26 16:25:51,421 epoch 2 - iter 44/48 - loss 0.40750888 - time (sec): 23.29 - samples/sec: 1392.82 - lr: 0.000045 - momentum: 0.000000
2024-03-26 16:25:52,678 epoch 2 - iter 48/48 - loss 0.40362786 - time (sec): 24.54 - samples/sec: 1404.48 - lr: 0.000045 - momentum: 0.000000
2024-03-26 16:25:52,679 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:52,679 EPOCH 2 done: loss 0.4036 - lr: 0.000045
2024-03-26 16:25:53,588 DEV : loss 0.30737343430519104 - f1-score (micro avg) 0.7935
2024-03-26 16:25:53,589 saving best model
2024-03-26 16:25:54,032 ----------------------------------------------------------------------------------------------------
2024-03-26 16:25:55,124 epoch 3 - iter 4/48 - loss 0.31144244 - time (sec): 1.09 - samples/sec: 2047.76 - lr: 0.000044 - momentum: 0.000000
2024-03-26 16:25:56,997 epoch 3 - iter 8/48 - loss 0.27506545 - time (sec): 2.96 - samples/sec: 1663.42 - lr: 0.000044 - momentum: 0.000000
2024-03-26 16:25:59,194 epoch 3 - iter 12/48 - loss 0.24414820 - time (sec): 5.16 - samples/sec: 1661.85 - lr: 0.000043 - momentum: 0.000000
2024-03-26 16:26:01,135 epoch 3 - iter 16/48 - loss 0.24252002 - time (sec): 7.10 - samples/sec: 1602.13 - lr: 0.000043 - momentum: 0.000000
2024-03-26 16:26:02,975 epoch 3 - iter 20/48 - loss 0.23661584 - time (sec): 8.94 - samples/sec: 1585.75 - lr: 0.000042 - momentum: 0.000000
2024-03-26 16:26:04,912 epoch 3 - iter 24/48 - loss 0.22527637 - time (sec): 10.88 - samples/sec: 1541.12 - lr: 0.000042 - momentum: 0.000000
2024-03-26 16:26:08,066 epoch 3 - iter 28/48 - loss 0.22345440 - time (sec): 14.03 - samples/sec: 1426.58 - lr: 0.000041 - momentum: 0.000000
2024-03-26 16:26:09,562 epoch 3 - iter 32/48 - loss 0.22304620 - time (sec): 15.53 - samples/sec: 1450.64 - lr: 0.000041 - momentum: 0.000000
2024-03-26 16:26:12,824 epoch 3 - iter 36/48 - loss 0.21388734 - time (sec): 18.79 - samples/sec: 1380.50 - lr: 0.000040 - momentum: 0.000000
2024-03-26 16:26:15,178 epoch 3 - iter 40/48 - loss 0.21228601 - time (sec): 21.14 - samples/sec: 1384.00 - lr: 0.000040 - momentum: 0.000000
2024-03-26 16:26:17,307 epoch 3 - iter 44/48 - loss 0.20813710 - time (sec): 23.27 - samples/sec: 1378.84 - lr: 0.000040 - momentum: 0.000000
2024-03-26 16:26:18,879 epoch 3 - iter 48/48 - loss 0.20795830 - time (sec): 24.84 - samples/sec: 1387.50 - lr: 0.000039 - momentum: 0.000000
2024-03-26 16:26:18,880 ----------------------------------------------------------------------------------------------------
2024-03-26 16:26:18,880 EPOCH 3 done: loss 0.2080 - lr: 0.000039
2024-03-26 16:26:19,767 DEV : loss 0.20917974412441254 - f1-score (micro avg) 0.8622
2024-03-26 16:26:19,768 saving best model
2024-03-26 16:26:20,218 ----------------------------------------------------------------------------------------------------
2024-03-26 16:26:23,167 epoch 4 - iter 4/48 - loss 0.11024253 - time (sec): 2.95 - samples/sec: 1265.46 - lr: 0.000039 - momentum: 0.000000
2024-03-26 16:26:24,592 epoch 4 - iter 8/48 - loss 0.14888858 - time (sec): 4.37 - samples/sec: 1422.46 - lr: 0.000038 - momentum: 0.000000
2024-03-26 16:26:27,106 epoch 4 - iter 12/48 - loss 0.13354107 - time (sec): 6.89 - samples/sec: 1350.58 - lr: 0.000038 - momentum: 0.000000
2024-03-26 16:26:29,757 epoch 4 - iter 16/48 - loss 0.13064756 - time (sec): 9.54 - samples/sec: 1331.26 - lr: 0.000037 - momentum: 0.000000
2024-03-26 16:26:32,007 epoch 4 - iter 20/48 - loss 0.12953050 - time (sec): 11.79 - samples/sec: 1338.92 - lr: 0.000037 - momentum: 0.000000
2024-03-26 16:26:33,506 epoch 4 - iter 24/48 - loss 0.12864352 - time (sec): 13.29 - samples/sec: 1372.20 - lr: 0.000036 - momentum: 0.000000
2024-03-26 16:26:35,865 epoch 4 - iter 28/48 - loss 0.13077801 - time (sec): 15.65 - samples/sec: 1357.74 - lr: 0.000036 - momentum: 0.000000
2024-03-26 16:26:38,806 epoch 4 - iter 32/48 - loss 0.12972820 - time (sec): 18.59 - samples/sec: 1348.34 - lr: 0.000035 - momentum: 0.000000
2024-03-26 16:26:40,434 epoch 4 - iter 36/48 - loss 0.13193083 - time (sec): 20.21 - samples/sec: 1373.12 - lr: 0.000035 - momentum: 0.000000
2024-03-26 16:26:41,417 epoch 4 - iter 40/48 - loss 0.13372377 - time (sec): 21.20 - samples/sec: 1416.72 - lr: 0.000034 - momentum: 0.000000
2024-03-26 16:26:42,850 epoch 4 - iter 44/48 - loss 0.13328906 - time (sec): 22.63 - samples/sec: 1437.61 - lr: 0.000034 - momentum: 0.000000
2024-03-26 16:26:43,721 epoch 4 - iter 48/48 - loss 0.13705591 - time (sec): 23.50 - samples/sec: 1466.83 - lr: 0.000034 - momentum: 0.000000
2024-03-26 16:26:43,722 ----------------------------------------------------------------------------------------------------
2024-03-26 16:26:43,722 EPOCH 4 done: loss 0.1371 - lr: 0.000034
2024-03-26 16:26:44,639 DEV : loss 0.16365402936935425 - f1-score (micro avg) 0.8996
2024-03-26 16:26:44,641 saving best model
2024-03-26 16:26:45,095 ----------------------------------------------------------------------------------------------------
2024-03-26 16:26:46,933 epoch 5 - iter 4/48 - loss 0.10828925 - time (sec): 1.84 - samples/sec: 1564.62 - lr: 0.000033 - momentum: 0.000000
2024-03-26 16:26:48,892 epoch 5 - iter 8/48 - loss 0.09388716 - time (sec): 3.79 - samples/sec: 1635.11 - lr: 0.000033 - momentum: 0.000000
2024-03-26 16:26:51,983 epoch 5 - iter 12/48 - loss 0.09384839 - time (sec): 6.89 - samples/sec: 1397.31 - lr: 0.000032 - momentum: 0.000000
2024-03-26 16:26:53,291 epoch 5 - iter 16/48 - loss 0.08935375 - time (sec): 8.19 - samples/sec: 1451.29 - lr: 0.000032 - momentum: 0.000000
2024-03-26 16:26:55,546 epoch 5 - iter 20/48 - loss 0.09852740 - time (sec): 10.45 - samples/sec: 1442.15 - lr: 0.000031 - momentum: 0.000000
2024-03-26 16:26:57,672 epoch 5 - iter 24/48 - loss 0.09806534 - time (sec): 12.57 - samples/sec: 1413.65 - lr: 0.000031 - momentum: 0.000000
2024-03-26 16:26:59,025 epoch 5 - iter 28/48 - loss 0.10178698 - time (sec): 13.93 - samples/sec: 1456.91 - lr: 0.000030 - momentum: 0.000000
2024-03-26 16:27:00,395 epoch 5 - iter 32/48 - loss 0.10298381 - time (sec): 15.30 - samples/sec: 1490.20 - lr: 0.000030 - momentum: 0.000000
2024-03-26 16:27:02,503 epoch 5 - iter 36/48 - loss 0.10207738 - time (sec): 17.41 - samples/sec: 1483.62 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:27:04,306 epoch 5 - iter 40/48 - loss 0.09992158 - time (sec): 19.21 - samples/sec: 1484.13 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:27:06,289 epoch 5 - iter 44/48 - loss 0.09681532 - time (sec): 21.19 - samples/sec: 1497.99 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:27:08,398 epoch 5 - iter 48/48 - loss 0.09501719 - time (sec): 23.30 - samples/sec: 1479.46 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:27:08,398 ----------------------------------------------------------------------------------------------------
2024-03-26 16:27:08,398 EPOCH 5 done: loss 0.0950 - lr: 0.000028
2024-03-26 16:27:09,314 DEV : loss 0.1693895161151886 - f1-score (micro avg) 0.9204
2024-03-26 16:27:09,315 saving best model
2024-03-26 16:27:09,766 ----------------------------------------------------------------------------------------------------
2024-03-26 16:27:11,657 epoch 6 - iter 4/48 - loss 0.06697839 - time (sec): 1.89 - samples/sec: 1452.00 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:27:14,401 epoch 6 - iter 8/48 - loss 0.07318846 - time (sec): 4.64 - samples/sec: 1371.23 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:27:16,302 epoch 6 - iter 12/48 - loss 0.08598918 - time (sec): 6.54 - samples/sec: 1381.59 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:27:17,790 epoch 6 - iter 16/48 - loss 0.09267531 - time (sec): 8.02 - samples/sec: 1442.01 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:27:20,498 epoch 6 - iter 20/48 - loss 0.08577303 - time (sec): 10.73 - samples/sec: 1358.61 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:27:23,169 epoch 6 - iter 24/48 - loss 0.07766058 - time (sec): 13.40 - samples/sec: 1332.98 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:27:25,638 epoch 6 - iter 28/48 - loss 0.07425913 - time (sec): 15.87 - samples/sec: 1307.33 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:27:27,031 epoch 6 - iter 32/48 - loss 0.07850212 - time (sec): 17.27 - samples/sec: 1350.35 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:27:28,900 epoch 6 - iter 36/48 - loss 0.07649915 - time (sec): 19.13 - samples/sec: 1361.08 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:27:29,888 epoch 6 - iter 40/48 - loss 0.07646863 - time (sec): 20.12 - samples/sec: 1401.99 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:27:32,413 epoch 6 - iter 44/48 - loss 0.07566080 - time (sec): 22.65 - samples/sec: 1373.90 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:27:35,195 epoch 6 - iter 48/48 - loss 0.07178153 - time (sec): 25.43 - samples/sec: 1355.63 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:27:35,195 ----------------------------------------------------------------------------------------------------
2024-03-26 16:27:35,195 EPOCH 6 done: loss 0.0718 - lr: 0.000023
2024-03-26 16:27:36,169 DEV : loss 0.1729598194360733 - f1-score (micro avg) 0.9172
2024-03-26 16:27:36,170 ----------------------------------------------------------------------------------------------------
2024-03-26 16:27:38,315 epoch 7 - iter 4/48 - loss 0.04416839 - time (sec): 2.14 - samples/sec: 1356.50 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:27:40,011 epoch 7 - iter 8/48 - loss 0.04150596 - time (sec): 3.84 - samples/sec: 1387.57 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:27:41,439 epoch 7 - iter 12/48 - loss 0.06633125 - time (sec): 5.27 - samples/sec: 1440.70 - lr: 0.000021 - momentum: 0.000000
2024-03-26 16:27:43,305 epoch 7 - iter 16/48 - loss 0.06072375 - time (sec): 7.13 - samples/sec: 1487.89 - lr: 0.000021 - momentum: 0.000000
2024-03-26 16:27:45,577 epoch 7 - iter 20/48 - loss 0.06340498 - time (sec): 9.41 - samples/sec: 1540.62 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:27:46,922 epoch 7 - iter 24/48 - loss 0.06004659 - time (sec): 10.75 - samples/sec: 1584.60 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:27:49,151 epoch 7 - iter 28/48 - loss 0.05903152 - time (sec): 12.98 - samples/sec: 1536.61 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:27:51,000 epoch 7 - iter 32/48 - loss 0.05980556 - time (sec): 14.83 - samples/sec: 1535.31 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:27:52,954 epoch 7 - iter 36/48 - loss 0.05848180 - time (sec): 16.78 - samples/sec: 1506.02 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:27:55,707 epoch 7 - iter 40/48 - loss 0.05540713 - time (sec): 19.54 - samples/sec: 1490.81 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:27:57,182 epoch 7 - iter 44/48 - loss 0.05614680 - time (sec): 21.01 - samples/sec: 1507.20 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:27:59,304 epoch 7 - iter 48/48 - loss 0.05380332 - time (sec): 23.13 - samples/sec: 1490.10 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:27:59,305 ----------------------------------------------------------------------------------------------------
2024-03-26 16:27:59,305 EPOCH 7 done: loss 0.0538 - lr: 0.000017
2024-03-26 16:28:00,225 DEV : loss 0.1722007542848587 - f1-score (micro avg) 0.9193
2024-03-26 16:28:00,228 ----------------------------------------------------------------------------------------------------
2024-03-26 16:28:02,446 epoch 8 - iter 4/48 - loss 0.06117107 - time (sec): 2.22 - samples/sec: 1257.30 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:28:03,987 epoch 8 - iter 8/48 - loss 0.03882310 - time (sec): 3.76 - samples/sec: 1445.96 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:28:06,886 epoch 8 - iter 12/48 - loss 0.03967183 - time (sec): 6.66 - samples/sec: 1351.66 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:28:09,327 epoch 8 - iter 16/48 - loss 0.04049592 - time (sec): 9.10 - samples/sec: 1350.28 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:28:10,767 epoch 8 - iter 20/48 - loss 0.03913119 - time (sec): 10.54 - samples/sec: 1409.65 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:28:12,189 epoch 8 - iter 24/48 - loss 0.03900572 - time (sec): 11.96 - samples/sec: 1479.33 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:28:13,504 epoch 8 - iter 28/48 - loss 0.03950225 - time (sec): 13.28 - samples/sec: 1540.14 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:28:15,673 epoch 8 - iter 32/48 - loss 0.04050648 - time (sec): 15.44 - samples/sec: 1499.98 - lr: 0.000013 - momentum: 0.000000
2024-03-26 16:28:18,203 epoch 8 - iter 36/48 - loss 0.03880663 - time (sec): 17.97 - samples/sec: 1456.62 - lr: 0.000013 - momentum: 0.000000
2024-03-26 16:28:20,139 epoch 8 - iter 40/48 - loss 0.04105555 - time (sec): 19.91 - samples/sec: 1465.82 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:28:22,258 epoch 8 - iter 44/48 - loss 0.04231408 - time (sec): 22.03 - samples/sec: 1449.96 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:28:23,854 epoch 8 - iter 48/48 - loss 0.04275838 - time (sec): 23.63 - samples/sec: 1459.13 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:28:23,854 ----------------------------------------------------------------------------------------------------
2024-03-26 16:28:23,854 EPOCH 8 done: loss 0.0428 - lr: 0.000011
2024-03-26 16:28:24,749 DEV : loss 0.17764846980571747 - f1-score (micro avg) 0.9284
2024-03-26 16:28:24,750 saving best model
2024-03-26 16:28:25,207 ----------------------------------------------------------------------------------------------------
2024-03-26 16:28:27,882 epoch 9 - iter 4/48 - loss 0.03206140 - time (sec): 2.67 - samples/sec: 1309.34 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:28:30,013 epoch 9 - iter 8/48 - loss 0.02525687 - time (sec): 4.80 - samples/sec: 1329.48 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:28:32,839 epoch 9 - iter 12/48 - loss 0.02697326 - time (sec): 7.63 - samples/sec: 1274.94 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:28:35,931 epoch 9 - iter 16/48 - loss 0.03951301 - time (sec): 10.72 - samples/sec: 1253.98 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:28:36,806 epoch 9 - iter 20/48 - loss 0.03757066 - time (sec): 11.60 - samples/sec: 1343.17 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:28:38,674 epoch 9 - iter 24/48 - loss 0.03542734 - time (sec): 13.46 - samples/sec: 1338.78 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:28:40,680 epoch 9 - iter 28/48 - loss 0.03450097 - time (sec): 15.47 - samples/sec: 1353.50 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:28:41,671 epoch 9 - iter 32/48 - loss 0.03470330 - time (sec): 16.46 - samples/sec: 1419.13 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:28:42,790 epoch 9 - iter 36/48 - loss 0.03393823 - time (sec): 17.58 - samples/sec: 1473.64 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:28:44,096 epoch 9 - iter 40/48 - loss 0.03250121 - time (sec): 18.89 - samples/sec: 1501.70 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:28:47,163 epoch 9 - iter 44/48 - loss 0.03527278 - time (sec): 21.95 - samples/sec: 1469.28 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:28:48,657 epoch 9 - iter 48/48 - loss 0.03398332 - time (sec): 23.45 - samples/sec: 1470.18 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:28:48,657 ----------------------------------------------------------------------------------------------------
2024-03-26 16:28:48,657 EPOCH 9 done: loss 0.0340 - lr: 0.000006
2024-03-26 16:28:49,585 DEV : loss 0.16971871256828308 - f1-score (micro avg) 0.9306
2024-03-26 16:28:49,586 saving best model
2024-03-26 16:28:50,041 ----------------------------------------------------------------------------------------------------
2024-03-26 16:28:52,881 epoch 10 - iter 4/48 - loss 0.02296023 - time (sec): 2.84 - samples/sec: 1307.68 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:28:54,853 epoch 10 - iter 8/48 - loss 0.02058276 - time (sec): 4.81 - samples/sec: 1343.16 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:28:57,040 epoch 10 - iter 12/48 - loss 0.02147638 - time (sec): 7.00 - samples/sec: 1299.47 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:28:59,505 epoch 10 - iter 16/48 - loss 0.01902792 - time (sec): 9.46 - samples/sec: 1261.98 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:29:02,073 epoch 10 - iter 20/48 - loss 0.02142494 - time (sec): 12.03 - samples/sec: 1265.33 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:29:03,490 epoch 10 - iter 24/48 - loss 0.02105055 - time (sec): 13.45 - samples/sec: 1326.26 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:29:04,374 epoch 10 - iter 28/48 - loss 0.02280153 - time (sec): 14.33 - samples/sec: 1397.59 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:29:06,306 epoch 10 - iter 32/48 - loss 0.02588816 - time (sec): 16.26 - samples/sec: 1418.12 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:29:08,582 epoch 10 - iter 36/48 - loss 0.02595188 - time (sec): 18.54 - samples/sec: 1395.33 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:29:10,247 epoch 10 - iter 40/48 - loss 0.02708344 - time (sec): 20.21 - samples/sec: 1421.38 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:29:13,421 epoch 10 - iter 44/48 - loss 0.02656335 - time (sec): 23.38 - samples/sec: 1401.83 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:29:14,149 epoch 10 - iter 48/48 - loss 0.02702381 - time (sec): 24.11 - samples/sec: 1429.95 - lr: 0.000000 - momentum: 0.000000
2024-03-26 16:29:14,149 ----------------------------------------------------------------------------------------------------
2024-03-26 16:29:14,149 EPOCH 10 done: loss 0.0270 - lr: 0.000000
2024-03-26 16:29:15,071 DEV : loss 0.1795857846736908 - f1-score (micro avg) 0.9329
2024-03-26 16:29:15,072 saving best model
2024-03-26 16:29:15,821 ----------------------------------------------------------------------------------------------------
2024-03-26 16:29:15,822 Loading model from best epoch ...
2024-03-26 16:29:16,714 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 16:29:17,467
Results:
- F-score (micro) 0.908
- F-score (macro) 0.6898
- Accuracy 0.8361
By class:
precision recall f1-score support
Unternehmen 0.8876 0.8910 0.8893 266
Auslagerung 0.8769 0.9157 0.8959 249
Ort 0.9635 0.9851 0.9742 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8964 0.9199 0.9080 649
macro avg 0.6820 0.6979 0.6898 649
weighted avg 0.8992 0.9199 0.9093 649
2024-03-26 16:29:17,467 ----------------------------------------------------------------------------------------------------
|