File size: 23,850 Bytes
25d16ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
2024-03-26 09:39:45,010 ----------------------------------------------------------------------------------------------------
2024-03-26 09:39:45,010 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 09:39:45,010 ----------------------------------------------------------------------------------------------------
2024-03-26 09:39:45,011 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 09:39:45,011 ----------------------------------------------------------------------------------------------------
2024-03-26 09:39:45,011 Train: 758 sentences
2024-03-26 09:39:45,011 (train_with_dev=False, train_with_test=False)
2024-03-26 09:39:45,011 ----------------------------------------------------------------------------------------------------
2024-03-26 09:39:45,011 Training Params:
2024-03-26 09:39:45,011 - learning_rate: "5e-05"
2024-03-26 09:39:45,011 - mini_batch_size: "8"
2024-03-26 09:39:45,011 - max_epochs: "10"
2024-03-26 09:39:45,011 - shuffle: "True"
2024-03-26 09:39:45,011 ----------------------------------------------------------------------------------------------------
2024-03-26 09:39:45,011 Plugins:
2024-03-26 09:39:45,011 - TensorboardLogger
2024-03-26 09:39:45,011 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 09:39:45,011 ----------------------------------------------------------------------------------------------------
2024-03-26 09:39:45,011 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 09:39:45,011 - metric: "('micro avg', 'f1-score')"
2024-03-26 09:39:45,011 ----------------------------------------------------------------------------------------------------
2024-03-26 09:39:45,011 Computation:
2024-03-26 09:39:45,011 - compute on device: cuda:0
2024-03-26 09:39:45,011 - embedding storage: none
2024-03-26 09:39:45,011 ----------------------------------------------------------------------------------------------------
2024-03-26 09:39:45,011 Model training base path: "flair-co-funer-gbert_base-bs8-e10-lr5e-05-1"
2024-03-26 09:39:45,011 ----------------------------------------------------------------------------------------------------
2024-03-26 09:39:45,011 ----------------------------------------------------------------------------------------------------
2024-03-26 09:39:45,011 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 09:39:46,596 epoch 1 - iter 9/95 - loss 3.05326256 - time (sec): 1.59 - samples/sec: 1942.31 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:39:48,126 epoch 1 - iter 18/95 - loss 2.83895391 - time (sec): 3.12 - samples/sec: 2006.72 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:39:50,518 epoch 1 - iter 27/95 - loss 2.59331548 - time (sec): 5.51 - samples/sec: 1859.51 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:39:52,748 epoch 1 - iter 36/95 - loss 2.43003112 - time (sec): 7.74 - samples/sec: 1806.93 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:39:54,635 epoch 1 - iter 45/95 - loss 2.28997757 - time (sec): 9.62 - samples/sec: 1814.48 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:39:55,860 epoch 1 - iter 54/95 - loss 2.17102423 - time (sec): 10.85 - samples/sec: 1856.38 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:39:57,564 epoch 1 - iter 63/95 - loss 2.05061689 - time (sec): 12.55 - samples/sec: 1853.40 - lr: 0.000033 - momentum: 0.000000
2024-03-26 09:39:58,845 epoch 1 - iter 72/95 - loss 1.94125898 - time (sec): 13.83 - samples/sec: 1883.06 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:40:00,817 epoch 1 - iter 81/95 - loss 1.81009489 - time (sec): 15.81 - samples/sec: 1873.87 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:40:02,140 epoch 1 - iter 90/95 - loss 1.71143912 - time (sec): 17.13 - samples/sec: 1893.86 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:40:03,361 ----------------------------------------------------------------------------------------------------
2024-03-26 09:40:03,361 EPOCH 1 done: loss 1.6404 - lr: 0.000047
2024-03-26 09:40:04,256 DEV : loss 0.47643521428108215 - f1-score (micro avg) 0.6785
2024-03-26 09:40:04,257 saving best model
2024-03-26 09:40:04,516 ----------------------------------------------------------------------------------------------------
2024-03-26 09:40:06,572 epoch 2 - iter 9/95 - loss 0.50078791 - time (sec): 2.06 - samples/sec: 1796.30 - lr: 0.000050 - momentum: 0.000000
2024-03-26 09:40:08,253 epoch 2 - iter 18/95 - loss 0.51331330 - time (sec): 3.74 - samples/sec: 1941.68 - lr: 0.000049 - momentum: 0.000000
2024-03-26 09:40:10,067 epoch 2 - iter 27/95 - loss 0.48020903 - time (sec): 5.55 - samples/sec: 1857.13 - lr: 0.000048 - momentum: 0.000000
2024-03-26 09:40:11,830 epoch 2 - iter 36/95 - loss 0.45498260 - time (sec): 7.31 - samples/sec: 1828.20 - lr: 0.000048 - momentum: 0.000000
2024-03-26 09:40:13,733 epoch 2 - iter 45/95 - loss 0.42599735 - time (sec): 9.22 - samples/sec: 1837.36 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:40:15,932 epoch 2 - iter 54/95 - loss 0.39935025 - time (sec): 11.42 - samples/sec: 1808.62 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:40:17,254 epoch 2 - iter 63/95 - loss 0.39798422 - time (sec): 12.74 - samples/sec: 1849.41 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:40:18,582 epoch 2 - iter 72/95 - loss 0.38729757 - time (sec): 14.07 - samples/sec: 1880.73 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:40:20,377 epoch 2 - iter 81/95 - loss 0.37731322 - time (sec): 15.86 - samples/sec: 1866.35 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:40:22,028 epoch 2 - iter 90/95 - loss 0.36835332 - time (sec): 17.51 - samples/sec: 1863.65 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:40:22,959 ----------------------------------------------------------------------------------------------------
2024-03-26 09:40:22,959 EPOCH 2 done: loss 0.3625 - lr: 0.000045
2024-03-26 09:40:23,850 DEV : loss 0.2613222301006317 - f1-score (micro avg) 0.8448
2024-03-26 09:40:23,851 saving best model
2024-03-26 09:40:24,277 ----------------------------------------------------------------------------------------------------
2024-03-26 09:40:26,224 epoch 3 - iter 9/95 - loss 0.29508313 - time (sec): 1.95 - samples/sec: 1724.83 - lr: 0.000044 - momentum: 0.000000
2024-03-26 09:40:28,144 epoch 3 - iter 18/95 - loss 0.25482220 - time (sec): 3.87 - samples/sec: 1740.63 - lr: 0.000043 - momentum: 0.000000
2024-03-26 09:40:29,490 epoch 3 - iter 27/95 - loss 0.23523110 - time (sec): 5.21 - samples/sec: 1835.40 - lr: 0.000043 - momentum: 0.000000
2024-03-26 09:40:31,951 epoch 3 - iter 36/95 - loss 0.22688565 - time (sec): 7.67 - samples/sec: 1762.04 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:40:34,173 epoch 3 - iter 45/95 - loss 0.21492865 - time (sec): 9.89 - samples/sec: 1794.15 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:40:35,332 epoch 3 - iter 54/95 - loss 0.21043158 - time (sec): 11.05 - samples/sec: 1853.67 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:40:37,247 epoch 3 - iter 63/95 - loss 0.20029173 - time (sec): 12.97 - samples/sec: 1836.73 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:40:38,856 epoch 3 - iter 72/95 - loss 0.19106908 - time (sec): 14.58 - samples/sec: 1842.42 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:40:40,595 epoch 3 - iter 81/95 - loss 0.19348835 - time (sec): 16.32 - samples/sec: 1833.29 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:40:42,760 epoch 3 - iter 90/95 - loss 0.18565234 - time (sec): 18.48 - samples/sec: 1802.35 - lr: 0.000039 - momentum: 0.000000
2024-03-26 09:40:43,234 ----------------------------------------------------------------------------------------------------
2024-03-26 09:40:43,234 EPOCH 3 done: loss 0.1856 - lr: 0.000039
2024-03-26 09:40:44,130 DEV : loss 0.23596186935901642 - f1-score (micro avg) 0.8698
2024-03-26 09:40:44,131 saving best model
2024-03-26 09:40:44,555 ----------------------------------------------------------------------------------------------------
2024-03-26 09:40:46,145 epoch 4 - iter 9/95 - loss 0.14874311 - time (sec): 1.59 - samples/sec: 2028.73 - lr: 0.000039 - momentum: 0.000000
2024-03-26 09:40:48,154 epoch 4 - iter 18/95 - loss 0.12660212 - time (sec): 3.60 - samples/sec: 1792.97 - lr: 0.000038 - momentum: 0.000000
2024-03-26 09:40:49,928 epoch 4 - iter 27/95 - loss 0.13552995 - time (sec): 5.37 - samples/sec: 1813.99 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:40:52,465 epoch 4 - iter 36/95 - loss 0.11480824 - time (sec): 7.91 - samples/sec: 1742.21 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:40:54,141 epoch 4 - iter 45/95 - loss 0.12251085 - time (sec): 9.58 - samples/sec: 1761.77 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:40:55,663 epoch 4 - iter 54/95 - loss 0.12355944 - time (sec): 11.11 - samples/sec: 1816.10 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:40:57,506 epoch 4 - iter 63/95 - loss 0.12445641 - time (sec): 12.95 - samples/sec: 1838.45 - lr: 0.000035 - momentum: 0.000000
2024-03-26 09:40:58,769 epoch 4 - iter 72/95 - loss 0.12555656 - time (sec): 14.21 - samples/sec: 1869.52 - lr: 0.000035 - momentum: 0.000000
2024-03-26 09:41:00,477 epoch 4 - iter 81/95 - loss 0.12386474 - time (sec): 15.92 - samples/sec: 1858.83 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:41:01,961 epoch 4 - iter 90/95 - loss 0.12057520 - time (sec): 17.40 - samples/sec: 1879.79 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:41:02,859 ----------------------------------------------------------------------------------------------------
2024-03-26 09:41:02,859 EPOCH 4 done: loss 0.1194 - lr: 0.000034
2024-03-26 09:41:03,820 DEV : loss 0.19999347627162933 - f1-score (micro avg) 0.901
2024-03-26 09:41:03,822 saving best model
2024-03-26 09:41:04,250 ----------------------------------------------------------------------------------------------------
2024-03-26 09:41:05,898 epoch 5 - iter 9/95 - loss 0.07573403 - time (sec): 1.65 - samples/sec: 1922.66 - lr: 0.000033 - momentum: 0.000000
2024-03-26 09:41:08,022 epoch 5 - iter 18/95 - loss 0.07869165 - time (sec): 3.77 - samples/sec: 1777.86 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:41:09,581 epoch 5 - iter 27/95 - loss 0.07792090 - time (sec): 5.33 - samples/sec: 1820.04 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:41:11,245 epoch 5 - iter 36/95 - loss 0.08045788 - time (sec): 6.99 - samples/sec: 1803.86 - lr: 0.000031 - momentum: 0.000000
2024-03-26 09:41:12,916 epoch 5 - iter 45/95 - loss 0.08891161 - time (sec): 8.66 - samples/sec: 1851.54 - lr: 0.000031 - momentum: 0.000000
2024-03-26 09:41:14,512 epoch 5 - iter 54/95 - loss 0.09411735 - time (sec): 10.26 - samples/sec: 1895.46 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:41:16,339 epoch 5 - iter 63/95 - loss 0.09161241 - time (sec): 12.09 - samples/sec: 1874.42 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:41:18,555 epoch 5 - iter 72/95 - loss 0.08398116 - time (sec): 14.30 - samples/sec: 1897.22 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:41:19,793 epoch 5 - iter 81/95 - loss 0.08584221 - time (sec): 15.54 - samples/sec: 1916.06 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:41:21,926 epoch 5 - iter 90/95 - loss 0.08331687 - time (sec): 17.67 - samples/sec: 1873.64 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:41:22,547 ----------------------------------------------------------------------------------------------------
2024-03-26 09:41:22,547 EPOCH 5 done: loss 0.0837 - lr: 0.000028
2024-03-26 09:41:23,531 DEV : loss 0.18806229531764984 - f1-score (micro avg) 0.911
2024-03-26 09:41:23,532 saving best model
2024-03-26 09:41:23,936 ----------------------------------------------------------------------------------------------------
2024-03-26 09:41:25,491 epoch 6 - iter 9/95 - loss 0.04652808 - time (sec): 1.55 - samples/sec: 1859.82 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:41:27,487 epoch 6 - iter 18/95 - loss 0.06784961 - time (sec): 3.55 - samples/sec: 1847.95 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:41:29,145 epoch 6 - iter 27/95 - loss 0.07010724 - time (sec): 5.21 - samples/sec: 1887.21 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:41:30,788 epoch 6 - iter 36/95 - loss 0.06725345 - time (sec): 6.85 - samples/sec: 1849.66 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:41:32,367 epoch 6 - iter 45/95 - loss 0.06885703 - time (sec): 8.43 - samples/sec: 1865.39 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:41:34,350 epoch 6 - iter 54/95 - loss 0.06740445 - time (sec): 10.41 - samples/sec: 1846.29 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:41:35,908 epoch 6 - iter 63/95 - loss 0.07108303 - time (sec): 11.97 - samples/sec: 1846.54 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:41:38,697 epoch 6 - iter 72/95 - loss 0.06547846 - time (sec): 14.76 - samples/sec: 1806.63 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:41:40,524 epoch 6 - iter 81/95 - loss 0.06482397 - time (sec): 16.59 - samples/sec: 1815.43 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:41:42,179 epoch 6 - iter 90/95 - loss 0.06574631 - time (sec): 18.24 - samples/sec: 1809.61 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:41:42,794 ----------------------------------------------------------------------------------------------------
2024-03-26 09:41:42,795 EPOCH 6 done: loss 0.0667 - lr: 0.000023
2024-03-26 09:41:43,692 DEV : loss 0.174924835562706 - f1-score (micro avg) 0.9185
2024-03-26 09:41:43,693 saving best model
2024-03-26 09:41:44,116 ----------------------------------------------------------------------------------------------------
2024-03-26 09:41:45,420 epoch 7 - iter 9/95 - loss 0.06767963 - time (sec): 1.30 - samples/sec: 2270.48 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:41:47,027 epoch 7 - iter 18/95 - loss 0.06888470 - time (sec): 2.91 - samples/sec: 2018.29 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:41:48,805 epoch 7 - iter 27/95 - loss 0.06592699 - time (sec): 4.69 - samples/sec: 1949.91 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:41:50,655 epoch 7 - iter 36/95 - loss 0.05818934 - time (sec): 6.54 - samples/sec: 1913.50 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:41:52,926 epoch 7 - iter 45/95 - loss 0.05334698 - time (sec): 8.81 - samples/sec: 1860.40 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:41:53,898 epoch 7 - iter 54/95 - loss 0.05494572 - time (sec): 9.78 - samples/sec: 1936.94 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:41:55,732 epoch 7 - iter 63/95 - loss 0.05116780 - time (sec): 11.61 - samples/sec: 1936.77 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:41:57,627 epoch 7 - iter 72/95 - loss 0.04795444 - time (sec): 13.51 - samples/sec: 1895.98 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:41:59,541 epoch 7 - iter 81/95 - loss 0.04872493 - time (sec): 15.42 - samples/sec: 1893.01 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:42:01,463 epoch 7 - iter 90/95 - loss 0.04880589 - time (sec): 17.35 - samples/sec: 1895.49 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:42:02,287 ----------------------------------------------------------------------------------------------------
2024-03-26 09:42:02,287 EPOCH 7 done: loss 0.0481 - lr: 0.000017
2024-03-26 09:42:03,187 DEV : loss 0.1872955858707428 - f1-score (micro avg) 0.92
2024-03-26 09:42:03,188 saving best model
2024-03-26 09:42:03,612 ----------------------------------------------------------------------------------------------------
2024-03-26 09:42:05,211 epoch 8 - iter 9/95 - loss 0.04073955 - time (sec): 1.60 - samples/sec: 1872.84 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:42:07,208 epoch 8 - iter 18/95 - loss 0.03528090 - time (sec): 3.59 - samples/sec: 1692.16 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:42:08,761 epoch 8 - iter 27/95 - loss 0.04052889 - time (sec): 5.15 - samples/sec: 1788.69 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:42:10,474 epoch 8 - iter 36/95 - loss 0.04517583 - time (sec): 6.86 - samples/sec: 1835.26 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:42:12,770 epoch 8 - iter 45/95 - loss 0.03767857 - time (sec): 9.16 - samples/sec: 1815.74 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:42:15,060 epoch 8 - iter 54/95 - loss 0.03986219 - time (sec): 11.45 - samples/sec: 1819.38 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:42:17,011 epoch 8 - iter 63/95 - loss 0.04051201 - time (sec): 13.40 - samples/sec: 1822.54 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:42:18,089 epoch 8 - iter 72/95 - loss 0.03988279 - time (sec): 14.47 - samples/sec: 1855.07 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:42:19,748 epoch 8 - iter 81/95 - loss 0.03860408 - time (sec): 16.13 - samples/sec: 1839.72 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:42:21,104 epoch 8 - iter 90/95 - loss 0.03816824 - time (sec): 17.49 - samples/sec: 1855.88 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:42:22,312 ----------------------------------------------------------------------------------------------------
2024-03-26 09:42:22,312 EPOCH 8 done: loss 0.0396 - lr: 0.000012
2024-03-26 09:42:23,209 DEV : loss 0.18396545946598053 - f1-score (micro avg) 0.9319
2024-03-26 09:42:23,210 saving best model
2024-03-26 09:42:23,634 ----------------------------------------------------------------------------------------------------
2024-03-26 09:42:25,375 epoch 9 - iter 9/95 - loss 0.01845985 - time (sec): 1.74 - samples/sec: 1997.59 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:42:27,288 epoch 9 - iter 18/95 - loss 0.01833515 - time (sec): 3.65 - samples/sec: 1849.94 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:42:29,101 epoch 9 - iter 27/95 - loss 0.02202731 - time (sec): 5.47 - samples/sec: 1797.96 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:42:30,945 epoch 9 - iter 36/95 - loss 0.03266732 - time (sec): 7.31 - samples/sec: 1842.06 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:42:32,805 epoch 9 - iter 45/95 - loss 0.02971071 - time (sec): 9.17 - samples/sec: 1818.40 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:42:34,629 epoch 9 - iter 54/95 - loss 0.02917467 - time (sec): 10.99 - samples/sec: 1850.50 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:42:36,484 epoch 9 - iter 63/95 - loss 0.02881615 - time (sec): 12.85 - samples/sec: 1848.20 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:42:38,047 epoch 9 - iter 72/95 - loss 0.03226438 - time (sec): 14.41 - samples/sec: 1857.67 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:42:39,732 epoch 9 - iter 81/95 - loss 0.03501505 - time (sec): 16.10 - samples/sec: 1847.40 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:42:41,468 epoch 9 - iter 90/95 - loss 0.03249197 - time (sec): 17.83 - samples/sec: 1864.18 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:42:41,959 ----------------------------------------------------------------------------------------------------
2024-03-26 09:42:41,959 EPOCH 9 done: loss 0.0336 - lr: 0.000006
2024-03-26 09:42:42,855 DEV : loss 0.17702238261699677 - f1-score (micro avg) 0.9415
2024-03-26 09:42:42,856 saving best model
2024-03-26 09:42:43,284 ----------------------------------------------------------------------------------------------------
2024-03-26 09:42:44,746 epoch 10 - iter 9/95 - loss 0.00570096 - time (sec): 1.46 - samples/sec: 1901.64 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:42:46,561 epoch 10 - iter 18/95 - loss 0.01306014 - time (sec): 3.28 - samples/sec: 1845.46 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:42:48,768 epoch 10 - iter 27/95 - loss 0.02043505 - time (sec): 5.48 - samples/sec: 1763.51 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:42:50,611 epoch 10 - iter 36/95 - loss 0.02853352 - time (sec): 7.33 - samples/sec: 1790.46 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:42:51,766 epoch 10 - iter 45/95 - loss 0.02757904 - time (sec): 8.48 - samples/sec: 1848.38 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:42:53,667 epoch 10 - iter 54/95 - loss 0.03013318 - time (sec): 10.38 - samples/sec: 1834.01 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:42:55,048 epoch 10 - iter 63/95 - loss 0.03142502 - time (sec): 11.76 - samples/sec: 1847.45 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:42:57,280 epoch 10 - iter 72/95 - loss 0.02735320 - time (sec): 13.99 - samples/sec: 1830.31 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:42:59,572 epoch 10 - iter 81/95 - loss 0.03121748 - time (sec): 16.29 - samples/sec: 1813.03 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:43:01,405 epoch 10 - iter 90/95 - loss 0.02889432 - time (sec): 18.12 - samples/sec: 1806.66 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:43:02,414 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:02,414 EPOCH 10 done: loss 0.0278 - lr: 0.000001
2024-03-26 09:43:03,313 DEV : loss 0.18273191154003143 - f1-score (micro avg) 0.9477
2024-03-26 09:43:03,314 saving best model
2024-03-26 09:43:04,053 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:04,053 Loading model from best epoch ...
2024-03-26 09:43:04,938 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 09:43:05,688
Results:
- F-score (micro) 0.918
- F-score (macro) 0.696
- Accuracy 0.8509
By class:
precision recall f1-score support
Unternehmen 0.9294 0.8910 0.9098 266
Auslagerung 0.8779 0.9237 0.9002 249
Ort 0.9635 0.9851 0.9742 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9131 0.9230 0.9180 649
macro avg 0.6927 0.6999 0.6960 649
weighted avg 0.9167 0.9230 0.9194 649
2024-03-26 09:43:05,688 ----------------------------------------------------------------------------------------------------
|