--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: uaspeech-whisper-lg-3-Nov3 results: [] --- # uaspeech-whisper-lg-3-Nov3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0571 - Wer: 8.1245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.7741 | 0.0719 | 100 | 0.6537 | 58.1245 | | 0.4975 | 0.1437 | 200 | 0.4079 | 39.8141 | | 0.3739 | 0.2156 | 300 | 0.3398 | 33.3872 | | 0.3037 | 0.2875 | 400 | 0.2941 | 30.2344 | | 0.2783 | 0.3593 | 500 | 0.2456 | 26.1116 | | 0.2568 | 0.4312 | 600 | 0.2270 | 25.1011 | | 0.2012 | 0.5031 | 700 | 0.2372 | 25.9903 | | 0.2139 | 0.5749 | 800 | 0.1828 | 21.3015 | | 0.1649 | 0.6468 | 900 | 0.1750 | 19.7656 | | 0.149 | 0.7186 | 1000 | 0.1640 | 19.4826 | | 0.146 | 0.7905 | 1100 | 0.1444 | 17.5829 | | 0.1424 | 0.8624 | 1200 | 0.1305 | 15.5214 | | 0.116 | 0.9342 | 1300 | 0.1294 | 16.3703 | | 0.121 | 1.0061 | 1400 | 0.1210 | 16.1277 | | 0.0755 | 1.0783 | 1500 | 0.1022 | 13.7833 | | 0.0754 | 1.1502 | 1600 | 0.0814 | 11.1156 | | 0.0919 | 1.2221 | 1700 | 0.0849 | 11.6815 | | 0.0801 | 1.2939 | 1800 | 0.0827 | 11.4794 | | 0.0751 | 1.3658 | 1900 | 0.0757 | 10.3476 | | 0.0727 | 1.4377 | 2000 | 0.0820 | 11.2773 | | 0.0797 | 1.5095 | 2100 | 0.0582 | 8.5287 | | 0.0712 | 1.5814 | 2200 | 0.0672 | 10.2264 | | 0.0655 | 1.6533 | 2300 | 0.0736 | 10.2668 | | 0.0635 | 1.7251 | 2400 | 0.0641 | 9.4988 | | 0.0646 | 1.7970 | 2500 | 0.0552 | 8.8521 | | 0.0618 | 1.8688 | 2600 | 0.0596 | 8.3670 | | 0.063 | 1.9407 | 2700 | 0.0517 | 7.7607 | | 0.0628 | 2.0126 | 2800 | 0.0448 | 6.2247 | | 0.029 | 2.0844 | 2900 | 0.0571 | 8.1245 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.1 - Datasets 3.0.0 - Tokenizers 0.19.1