Spaces:
Running
Running
Upload 4 files
Browse files- app.py +329 -0
- app_gradio.py +329 -0
- readme.md +25 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import cv2
|
4 |
+
import imutils
|
5 |
+
import shutil
|
6 |
+
import img2pdf
|
7 |
+
import glob
|
8 |
+
from skimage.metrics import structural_similarity
|
9 |
+
import gradio as gr
|
10 |
+
import tempfile
|
11 |
+
|
12 |
+
############# Define constants
|
13 |
+
|
14 |
+
OUTPUT_SLIDES_DIR = f"./output"
|
15 |
+
|
16 |
+
FRAME_RATE = 3 # no.of frames per second that needs to be processed, fewer the count faster the speed
|
17 |
+
WARMUP = FRAME_RATE # initial number of frames to be skipped
|
18 |
+
FGBG_HISTORY = FRAME_RATE * 15 # no.of frames in background object
|
19 |
+
VAR_THRESHOLD = 16 # Threshold on the squared Mahalanobis distance between the pixel and the model to decide whether a pixel is well described by the background model.
|
20 |
+
DETECT_SHADOWS = False # If true, the algorithm will detect shadows and mark them.
|
21 |
+
MIN_PERCENT = 0.1 # min % of diff between foreground and background to detect if motion has stopped
|
22 |
+
MAX_PERCENT = 3 # max % of diff between foreground and background to detect if frame is still in motion
|
23 |
+
SSIM_THRESHOLD = 0.9 # SSIM threshold of two consecutive frame
|
24 |
+
|
25 |
+
|
26 |
+
def get_frames(video_path):
|
27 |
+
'''A fucntion to return the frames from a video located at video_path
|
28 |
+
this function skips frames as defined in FRAME_RATE'''
|
29 |
+
|
30 |
+
|
31 |
+
# open a pointer to the video file initialize the width and height of the frame
|
32 |
+
vs = cv2.VideoCapture(video_path)
|
33 |
+
if not vs.isOpened():
|
34 |
+
raise Exception(f'unable to open file {video_path}')
|
35 |
+
|
36 |
+
|
37 |
+
total_frames = vs.get(cv2.CAP_PROP_FRAME_COUNT)
|
38 |
+
frame_time = 0
|
39 |
+
frame_count = 0
|
40 |
+
|
41 |
+
# loop over the frames of the video
|
42 |
+
while True:
|
43 |
+
vs.set(cv2.CAP_PROP_POS_MSEC, frame_time * 1000) # move frame to a timestamp
|
44 |
+
frame_time += 1/FRAME_RATE
|
45 |
+
|
46 |
+
(_, frame) = vs.read()
|
47 |
+
# if the frame is None, then we have reached the end of the video file
|
48 |
+
if frame is None:
|
49 |
+
break
|
50 |
+
|
51 |
+
frame_count += 1
|
52 |
+
yield frame_count, frame_time, frame
|
53 |
+
|
54 |
+
vs.release()
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
def detect_unique_screenshots(video_path, output_folder_screenshot_path, progress=gr.Progress()):
|
59 |
+
'''Extract unique screenshots from video'''
|
60 |
+
fgbg = cv2.createBackgroundSubtractorMOG2(history=FGBG_HISTORY, varThreshold=VAR_THRESHOLD,detectShadows=DETECT_SHADOWS)
|
61 |
+
|
62 |
+
captured = False
|
63 |
+
start_time = time.time()
|
64 |
+
(W, H) = (None, None)
|
65 |
+
|
66 |
+
# Get total frames for progress calculation
|
67 |
+
cap = cv2.VideoCapture(video_path)
|
68 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
69 |
+
cap.release()
|
70 |
+
|
71 |
+
screenshoots_count = 0
|
72 |
+
last_screenshot = None
|
73 |
+
saved_files = []
|
74 |
+
|
75 |
+
progress(0, desc="初始化视频处理...")
|
76 |
+
|
77 |
+
for frame_count, frame_time, frame in get_frames(video_path):
|
78 |
+
# Update progress
|
79 |
+
progress((frame_count / total_frames) * 0.7, desc=f"处理视频帧 {frame_count}/{total_frames}")
|
80 |
+
|
81 |
+
orig = frame.copy()
|
82 |
+
frame = imutils.resize(frame, width=600)
|
83 |
+
mask = fgbg.apply(frame)
|
84 |
+
|
85 |
+
if W is None or H is None:
|
86 |
+
(H, W) = mask.shape[:2]
|
87 |
+
|
88 |
+
p_diff = (cv2.countNonZero(mask) / float(W * H)) * 100
|
89 |
+
|
90 |
+
if p_diff < MIN_PERCENT and not captured and frame_count > WARMUP:
|
91 |
+
captured = True
|
92 |
+
filename = f"{screenshoots_count:03}_{round(frame_time/60, 2)}.png"
|
93 |
+
path = os.path.join(output_folder_screenshot_path, filename)
|
94 |
+
|
95 |
+
image_ssim = 0.0
|
96 |
+
if last_screenshot is not None:
|
97 |
+
image_ssim = structural_similarity(last_screenshot, orig, channel_axis=2, data_range=255)
|
98 |
+
|
99 |
+
if image_ssim < SSIM_THRESHOLD:
|
100 |
+
try:
|
101 |
+
progress(0.7 + (screenshoots_count * 0.1), desc=f"保存截图 {screenshoots_count + 1}")
|
102 |
+
print("saving {}".format(path))
|
103 |
+
cv2.imwrite(str(path), orig)
|
104 |
+
last_screenshot = orig
|
105 |
+
saved_files.append(path)
|
106 |
+
screenshoots_count += 1
|
107 |
+
except Exception as e:
|
108 |
+
print(f"Error saving image: {str(e)}")
|
109 |
+
continue
|
110 |
+
|
111 |
+
elif captured and p_diff >= MAX_PERCENT:
|
112 |
+
captured = False
|
113 |
+
|
114 |
+
progress(0.8, desc="截图提取完成")
|
115 |
+
print(f'{screenshoots_count} screenshots Captured!')
|
116 |
+
print(f'Time taken {time.time()-start_time}s')
|
117 |
+
return saved_files
|
118 |
+
|
119 |
+
|
120 |
+
def initialize_output_folder(video_path):
|
121 |
+
'''Clean the output folder if already exists'''
|
122 |
+
# Create a safe folder name from video filename
|
123 |
+
video_filename = os.path.splitext(os.path.basename(video_path))[0]
|
124 |
+
# Replace potentially problematic characters
|
125 |
+
safe_filename = "".join(x for x in video_filename if x.isalnum() or x in (' ', '-', '_'))
|
126 |
+
output_folder_screenshot_path = os.path.join(OUTPUT_SLIDES_DIR, safe_filename)
|
127 |
+
|
128 |
+
if os.path.exists(output_folder_screenshot_path):
|
129 |
+
shutil.rmtree(output_folder_screenshot_path)
|
130 |
+
|
131 |
+
os.makedirs(output_folder_screenshot_path, exist_ok=True)
|
132 |
+
print('initialized output folder', output_folder_screenshot_path)
|
133 |
+
return output_folder_screenshot_path
|
134 |
+
|
135 |
+
|
136 |
+
def convert_screenshots_to_pdf(video_path, output_folder_screenshot_path):
|
137 |
+
# Create a safe filename
|
138 |
+
video_filename = os.path.splitext(os.path.basename(video_path))[0]
|
139 |
+
safe_filename = "".join(x for x in video_filename if x.isalnum() or x in (' ', '-', '_'))
|
140 |
+
output_pdf_path = os.path.join(OUTPUT_SLIDES_DIR, f"{safe_filename}.pdf")
|
141 |
+
|
142 |
+
try:
|
143 |
+
print('output_folder_screenshot_path', output_folder_screenshot_path)
|
144 |
+
print('output_pdf_path', output_pdf_path)
|
145 |
+
print('converting images to pdf..')
|
146 |
+
|
147 |
+
# Get all PNG files and ensure they exist
|
148 |
+
png_files = sorted(glob.glob(os.path.join(output_folder_screenshot_path, "*.png")))
|
149 |
+
if not png_files:
|
150 |
+
raise Exception("No PNG files found to convert to PDF")
|
151 |
+
|
152 |
+
with open(output_pdf_path, "wb") as f:
|
153 |
+
f.write(img2pdf.convert(png_files))
|
154 |
+
|
155 |
+
print('Pdf Created!')
|
156 |
+
print('pdf saved at', output_pdf_path)
|
157 |
+
return output_pdf_path
|
158 |
+
except Exception as e:
|
159 |
+
print(f"Error creating PDF: {str(e)}")
|
160 |
+
raise
|
161 |
+
|
162 |
+
|
163 |
+
def video_to_slides(video_path, progress=gr.Progress()):
|
164 |
+
progress(0.1, desc="准备处理视频...")
|
165 |
+
output_folder_screenshot_path = initialize_output_folder(video_path)
|
166 |
+
saved_files = detect_unique_screenshots(video_path, output_folder_screenshot_path, progress)
|
167 |
+
return output_folder_screenshot_path, saved_files
|
168 |
+
|
169 |
+
|
170 |
+
def slides_to_pdf(video_path, output_folder_screenshot_path, saved_files, progress=gr.Progress()):
|
171 |
+
video_filename = os.path.splitext(os.path.basename(video_path))[0]
|
172 |
+
safe_filename = "".join(x for x in video_filename if x.isalnum() or x in (' ', '-', '_'))
|
173 |
+
output_pdf_path = os.path.join(OUTPUT_SLIDES_DIR, f"{safe_filename}.pdf")
|
174 |
+
|
175 |
+
try:
|
176 |
+
progress(0.9, desc="正在生成PDF...")
|
177 |
+
print('output_folder_screenshot_path', output_folder_screenshot_path)
|
178 |
+
print('output_pdf_path', output_pdf_path)
|
179 |
+
|
180 |
+
if not saved_files:
|
181 |
+
raise Exception("未从视频中捕获到截图")
|
182 |
+
|
183 |
+
existing_files = [f for f in saved_files if os.path.exists(f)]
|
184 |
+
if not existing_files:
|
185 |
+
raise Exception("未找到保存的截图文件")
|
186 |
+
|
187 |
+
with open(output_pdf_path, "wb") as f:
|
188 |
+
f.write(img2pdf.convert(existing_files))
|
189 |
+
|
190 |
+
progress(1.0, desc="处理完成!")
|
191 |
+
print('PDF创建成功!')
|
192 |
+
print('PDF保存位置:', output_pdf_path)
|
193 |
+
return output_pdf_path
|
194 |
+
except Exception as e:
|
195 |
+
print(f"创建PDF时出错: {str(e)}")
|
196 |
+
raise
|
197 |
+
|
198 |
+
|
199 |
+
def run_app(video_path, progress=gr.Progress()):
|
200 |
+
try:
|
201 |
+
if not video_path:
|
202 |
+
raise gr.Error("请选择要处理的视频文件")
|
203 |
+
|
204 |
+
progress(0, desc="开始处理...")
|
205 |
+
output_folder_screenshot_path, saved_files = video_to_slides(video_path, progress)
|
206 |
+
return slides_to_pdf(video_path, output_folder_screenshot_path, saved_files, progress)
|
207 |
+
except Exception as e:
|
208 |
+
raise gr.Error(f"处理失败: {str(e)}")
|
209 |
+
|
210 |
+
|
211 |
+
def process_video_file(video_file):
|
212 |
+
"""Handle uploaded video file and return PDF"""
|
213 |
+
try:
|
214 |
+
# If video_file is a string (path), use it directly
|
215 |
+
if isinstance(video_file, str):
|
216 |
+
if video_file.strip() == "":
|
217 |
+
return None
|
218 |
+
return run_app(video_file)
|
219 |
+
|
220 |
+
# If it's an uploaded file, create a temporary file
|
221 |
+
if video_file is not None:
|
222 |
+
# Generate a unique filename for the temporary video
|
223 |
+
temp_filename = f"temp_video_{int(time.time())}.mp4"
|
224 |
+
temp_path = os.path.join(tempfile.gettempdir(), temp_filename)
|
225 |
+
|
226 |
+
try:
|
227 |
+
if hasattr(video_file, 'name'): # If it's already a file path
|
228 |
+
shutil.copyfile(video_file, temp_path)
|
229 |
+
else: # If it's file content
|
230 |
+
with open(temp_path, 'wb') as f:
|
231 |
+
f.write(video_file)
|
232 |
+
|
233 |
+
# Process the video
|
234 |
+
output_folder_screenshot_path, saved_files = video_to_slides(temp_path)
|
235 |
+
pdf_path = slides_to_pdf(temp_path, output_folder_screenshot_path, saved_files)
|
236 |
+
|
237 |
+
# Cleanup
|
238 |
+
if os.path.exists(temp_path):
|
239 |
+
os.unlink(temp_path)
|
240 |
+
return pdf_path
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
if os.path.exists(temp_path):
|
244 |
+
os.unlink(temp_path)
|
245 |
+
raise gr.Error(f"处理视频时出错: {str(e)}")
|
246 |
+
return None
|
247 |
+
except Exception as e:
|
248 |
+
raise gr.Error(f"处理视频时出错: {str(e)}")
|
249 |
+
|
250 |
+
# Create a modern interface with custom CSS
|
251 |
+
css = """
|
252 |
+
.gradio-container {
|
253 |
+
font-family: 'SF Pro Display', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
|
254 |
+
}
|
255 |
+
.container {
|
256 |
+
max-width: 900px;
|
257 |
+
margin: auto;
|
258 |
+
padding: 20px;
|
259 |
+
}
|
260 |
+
.gr-button {
|
261 |
+
background: linear-gradient(90deg, #2563eb, #3b82f6);
|
262 |
+
border: none;
|
263 |
+
color: white;
|
264 |
+
}
|
265 |
+
.gr-button:hover {
|
266 |
+
background: linear-gradient(90deg, #1d4ed8, #2563eb);
|
267 |
+
transform: translateY(-1px);
|
268 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
|
269 |
+
}
|
270 |
+
.status-info {
|
271 |
+
margin-top: 10px;
|
272 |
+
padding: 10px;
|
273 |
+
border-radius: 4px;
|
274 |
+
background-color: #f3f4f6;
|
275 |
+
}
|
276 |
+
"""
|
277 |
+
|
278 |
+
with gr.Blocks(css=css) as iface:
|
279 |
+
gr.Markdown(
|
280 |
+
"""
|
281 |
+
# 🎥 视频转PDF智能助手
|
282 |
+
|
283 |
+
### 轻松将视频转换为高质量PDF文档
|
284 |
+
公众号:正经人王同学 | 全网同名
|
285 |
+
"""
|
286 |
+
)
|
287 |
+
|
288 |
+
with gr.Row():
|
289 |
+
with gr.Column():
|
290 |
+
video_input = gr.Video(label="上传视频")
|
291 |
+
video_path = gr.Textbox(label="或输入视频路径", placeholder="例如: ./input/video.mp4")
|
292 |
+
convert_btn = gr.Button("开始转换", variant="primary")
|
293 |
+
|
294 |
+
with gr.Row():
|
295 |
+
output_file = gr.File(label="下载PDF")
|
296 |
+
|
297 |
+
with gr.Row():
|
298 |
+
status = gr.Markdown(value="", elem_classes=["status-info"])
|
299 |
+
|
300 |
+
gr.Markdown(
|
301 |
+
"""
|
302 |
+
### 使用说明
|
303 |
+
1. 上传视频文件 或 输入视频文件路径
|
304 |
+
2. 点击"开始转换"按钮
|
305 |
+
3. 等待处理完成后下载生成的PDF文件
|
306 |
+
|
307 |
+
### 特点
|
308 |
+
- 智能检测视频关键帧
|
309 |
+
- 高质量PDF输出
|
310 |
+
- 支持多种视频格式
|
311 |
+
"""
|
312 |
+
)
|
313 |
+
|
314 |
+
def process_video(video, path):
|
315 |
+
if video:
|
316 |
+
return run_app(video)
|
317 |
+
elif path:
|
318 |
+
return run_app(path)
|
319 |
+
else:
|
320 |
+
raise gr.Error("请上传视频或输入视频路径")
|
321 |
+
|
322 |
+
convert_btn.click(
|
323 |
+
fn=process_video,
|
324 |
+
inputs=[video_input, video_path],
|
325 |
+
outputs=[output_file],
|
326 |
+
)
|
327 |
+
|
328 |
+
if __name__ == "__main__":
|
329 |
+
iface.launch()
|
app_gradio.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import cv2
|
4 |
+
import imutils
|
5 |
+
import shutil
|
6 |
+
import img2pdf
|
7 |
+
import glob
|
8 |
+
from skimage.metrics import structural_similarity
|
9 |
+
import gradio as gr
|
10 |
+
import tempfile
|
11 |
+
|
12 |
+
############# Define constants
|
13 |
+
|
14 |
+
OUTPUT_SLIDES_DIR = f"./output"
|
15 |
+
|
16 |
+
FRAME_RATE = 3 # no.of frames per second that needs to be processed, fewer the count faster the speed
|
17 |
+
WARMUP = FRAME_RATE # initial number of frames to be skipped
|
18 |
+
FGBG_HISTORY = FRAME_RATE * 15 # no.of frames in background object
|
19 |
+
VAR_THRESHOLD = 16 # Threshold on the squared Mahalanobis distance between the pixel and the model to decide whether a pixel is well described by the background model.
|
20 |
+
DETECT_SHADOWS = False # If true, the algorithm will detect shadows and mark them.
|
21 |
+
MIN_PERCENT = 0.1 # min % of diff between foreground and background to detect if motion has stopped
|
22 |
+
MAX_PERCENT = 3 # max % of diff between foreground and background to detect if frame is still in motion
|
23 |
+
SSIM_THRESHOLD = 0.9 # SSIM threshold of two consecutive frame
|
24 |
+
|
25 |
+
|
26 |
+
def get_frames(video_path):
|
27 |
+
'''A fucntion to return the frames from a video located at video_path
|
28 |
+
this function skips frames as defined in FRAME_RATE'''
|
29 |
+
|
30 |
+
|
31 |
+
# open a pointer to the video file initialize the width and height of the frame
|
32 |
+
vs = cv2.VideoCapture(video_path)
|
33 |
+
if not vs.isOpened():
|
34 |
+
raise Exception(f'unable to open file {video_path}')
|
35 |
+
|
36 |
+
|
37 |
+
total_frames = vs.get(cv2.CAP_PROP_FRAME_COUNT)
|
38 |
+
frame_time = 0
|
39 |
+
frame_count = 0
|
40 |
+
|
41 |
+
# loop over the frames of the video
|
42 |
+
while True:
|
43 |
+
vs.set(cv2.CAP_PROP_POS_MSEC, frame_time * 1000) # move frame to a timestamp
|
44 |
+
frame_time += 1/FRAME_RATE
|
45 |
+
|
46 |
+
(_, frame) = vs.read()
|
47 |
+
# if the frame is None, then we have reached the end of the video file
|
48 |
+
if frame is None:
|
49 |
+
break
|
50 |
+
|
51 |
+
frame_count += 1
|
52 |
+
yield frame_count, frame_time, frame
|
53 |
+
|
54 |
+
vs.release()
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
def detect_unique_screenshots(video_path, output_folder_screenshot_path, progress=gr.Progress()):
|
59 |
+
'''Extract unique screenshots from video'''
|
60 |
+
fgbg = cv2.createBackgroundSubtractorMOG2(history=FGBG_HISTORY, varThreshold=VAR_THRESHOLD,detectShadows=DETECT_SHADOWS)
|
61 |
+
|
62 |
+
captured = False
|
63 |
+
start_time = time.time()
|
64 |
+
(W, H) = (None, None)
|
65 |
+
|
66 |
+
# Get total frames for progress calculation
|
67 |
+
cap = cv2.VideoCapture(video_path)
|
68 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
69 |
+
cap.release()
|
70 |
+
|
71 |
+
screenshoots_count = 0
|
72 |
+
last_screenshot = None
|
73 |
+
saved_files = []
|
74 |
+
|
75 |
+
progress(0, desc="初始化视频处理...")
|
76 |
+
|
77 |
+
for frame_count, frame_time, frame in get_frames(video_path):
|
78 |
+
# Update progress
|
79 |
+
progress((frame_count / total_frames) * 0.7, desc=f"处理视频帧 {frame_count}/{total_frames}")
|
80 |
+
|
81 |
+
orig = frame.copy()
|
82 |
+
frame = imutils.resize(frame, width=600)
|
83 |
+
mask = fgbg.apply(frame)
|
84 |
+
|
85 |
+
if W is None or H is None:
|
86 |
+
(H, W) = mask.shape[:2]
|
87 |
+
|
88 |
+
p_diff = (cv2.countNonZero(mask) / float(W * H)) * 100
|
89 |
+
|
90 |
+
if p_diff < MIN_PERCENT and not captured and frame_count > WARMUP:
|
91 |
+
captured = True
|
92 |
+
filename = f"{screenshoots_count:03}_{round(frame_time/60, 2)}.png"
|
93 |
+
path = os.path.join(output_folder_screenshot_path, filename)
|
94 |
+
|
95 |
+
image_ssim = 0.0
|
96 |
+
if last_screenshot is not None:
|
97 |
+
image_ssim = structural_similarity(last_screenshot, orig, channel_axis=2, data_range=255)
|
98 |
+
|
99 |
+
if image_ssim < SSIM_THRESHOLD:
|
100 |
+
try:
|
101 |
+
progress(0.7 + (screenshoots_count * 0.1), desc=f"保存截图 {screenshoots_count + 1}")
|
102 |
+
print("saving {}".format(path))
|
103 |
+
cv2.imwrite(str(path), orig)
|
104 |
+
last_screenshot = orig
|
105 |
+
saved_files.append(path)
|
106 |
+
screenshoots_count += 1
|
107 |
+
except Exception as e:
|
108 |
+
print(f"Error saving image: {str(e)}")
|
109 |
+
continue
|
110 |
+
|
111 |
+
elif captured and p_diff >= MAX_PERCENT:
|
112 |
+
captured = False
|
113 |
+
|
114 |
+
progress(0.8, desc="截图提取完成")
|
115 |
+
print(f'{screenshoots_count} screenshots Captured!')
|
116 |
+
print(f'Time taken {time.time()-start_time}s')
|
117 |
+
return saved_files
|
118 |
+
|
119 |
+
|
120 |
+
def initialize_output_folder(video_path):
|
121 |
+
'''Clean the output folder if already exists'''
|
122 |
+
# Create a safe folder name from video filename
|
123 |
+
video_filename = os.path.splitext(os.path.basename(video_path))[0]
|
124 |
+
# Replace potentially problematic characters
|
125 |
+
safe_filename = "".join(x for x in video_filename if x.isalnum() or x in (' ', '-', '_'))
|
126 |
+
output_folder_screenshot_path = os.path.join(OUTPUT_SLIDES_DIR, safe_filename)
|
127 |
+
|
128 |
+
if os.path.exists(output_folder_screenshot_path):
|
129 |
+
shutil.rmtree(output_folder_screenshot_path)
|
130 |
+
|
131 |
+
os.makedirs(output_folder_screenshot_path, exist_ok=True)
|
132 |
+
print('initialized output folder', output_folder_screenshot_path)
|
133 |
+
return output_folder_screenshot_path
|
134 |
+
|
135 |
+
|
136 |
+
def convert_screenshots_to_pdf(video_path, output_folder_screenshot_path):
|
137 |
+
# Create a safe filename
|
138 |
+
video_filename = os.path.splitext(os.path.basename(video_path))[0]
|
139 |
+
safe_filename = "".join(x for x in video_filename if x.isalnum() or x in (' ', '-', '_'))
|
140 |
+
output_pdf_path = os.path.join(OUTPUT_SLIDES_DIR, f"{safe_filename}.pdf")
|
141 |
+
|
142 |
+
try:
|
143 |
+
print('output_folder_screenshot_path', output_folder_screenshot_path)
|
144 |
+
print('output_pdf_path', output_pdf_path)
|
145 |
+
print('converting images to pdf..')
|
146 |
+
|
147 |
+
# Get all PNG files and ensure they exist
|
148 |
+
png_files = sorted(glob.glob(os.path.join(output_folder_screenshot_path, "*.png")))
|
149 |
+
if not png_files:
|
150 |
+
raise Exception("No PNG files found to convert to PDF")
|
151 |
+
|
152 |
+
with open(output_pdf_path, "wb") as f:
|
153 |
+
f.write(img2pdf.convert(png_files))
|
154 |
+
|
155 |
+
print('Pdf Created!')
|
156 |
+
print('pdf saved at', output_pdf_path)
|
157 |
+
return output_pdf_path
|
158 |
+
except Exception as e:
|
159 |
+
print(f"Error creating PDF: {str(e)}")
|
160 |
+
raise
|
161 |
+
|
162 |
+
|
163 |
+
def video_to_slides(video_path, progress=gr.Progress()):
|
164 |
+
progress(0.1, desc="准备处理视频...")
|
165 |
+
output_folder_screenshot_path = initialize_output_folder(video_path)
|
166 |
+
saved_files = detect_unique_screenshots(video_path, output_folder_screenshot_path, progress)
|
167 |
+
return output_folder_screenshot_path, saved_files
|
168 |
+
|
169 |
+
|
170 |
+
def slides_to_pdf(video_path, output_folder_screenshot_path, saved_files, progress=gr.Progress()):
|
171 |
+
video_filename = os.path.splitext(os.path.basename(video_path))[0]
|
172 |
+
safe_filename = "".join(x for x in video_filename if x.isalnum() or x in (' ', '-', '_'))
|
173 |
+
output_pdf_path = os.path.join(OUTPUT_SLIDES_DIR, f"{safe_filename}.pdf")
|
174 |
+
|
175 |
+
try:
|
176 |
+
progress(0.9, desc="正在生成PDF...")
|
177 |
+
print('output_folder_screenshot_path', output_folder_screenshot_path)
|
178 |
+
print('output_pdf_path', output_pdf_path)
|
179 |
+
|
180 |
+
if not saved_files:
|
181 |
+
raise Exception("未从视频中捕获到截图")
|
182 |
+
|
183 |
+
existing_files = [f for f in saved_files if os.path.exists(f)]
|
184 |
+
if not existing_files:
|
185 |
+
raise Exception("未找到保存的截图文件")
|
186 |
+
|
187 |
+
with open(output_pdf_path, "wb") as f:
|
188 |
+
f.write(img2pdf.convert(existing_files))
|
189 |
+
|
190 |
+
progress(1.0, desc="处理完成!")
|
191 |
+
print('PDF创建成功!')
|
192 |
+
print('PDF保存位置:', output_pdf_path)
|
193 |
+
return output_pdf_path
|
194 |
+
except Exception as e:
|
195 |
+
print(f"创建PDF时出错: {str(e)}")
|
196 |
+
raise
|
197 |
+
|
198 |
+
|
199 |
+
def run_app(video_path, progress=gr.Progress()):
|
200 |
+
try:
|
201 |
+
if not video_path:
|
202 |
+
raise gr.Error("请选择要处理的视频文件")
|
203 |
+
|
204 |
+
progress(0, desc="开始处理...")
|
205 |
+
output_folder_screenshot_path, saved_files = video_to_slides(video_path, progress)
|
206 |
+
return slides_to_pdf(video_path, output_folder_screenshot_path, saved_files, progress)
|
207 |
+
except Exception as e:
|
208 |
+
raise gr.Error(f"处理失败: {str(e)}")
|
209 |
+
|
210 |
+
|
211 |
+
def process_video_file(video_file):
|
212 |
+
"""Handle uploaded video file and return PDF"""
|
213 |
+
try:
|
214 |
+
# If video_file is a string (path), use it directly
|
215 |
+
if isinstance(video_file, str):
|
216 |
+
if video_file.strip() == "":
|
217 |
+
return None
|
218 |
+
return run_app(video_file)
|
219 |
+
|
220 |
+
# If it's an uploaded file, create a temporary file
|
221 |
+
if video_file is not None:
|
222 |
+
# Generate a unique filename for the temporary video
|
223 |
+
temp_filename = f"temp_video_{int(time.time())}.mp4"
|
224 |
+
temp_path = os.path.join(tempfile.gettempdir(), temp_filename)
|
225 |
+
|
226 |
+
try:
|
227 |
+
if hasattr(video_file, 'name'): # If it's already a file path
|
228 |
+
shutil.copyfile(video_file, temp_path)
|
229 |
+
else: # If it's file content
|
230 |
+
with open(temp_path, 'wb') as f:
|
231 |
+
f.write(video_file)
|
232 |
+
|
233 |
+
# Process the video
|
234 |
+
output_folder_screenshot_path, saved_files = video_to_slides(temp_path)
|
235 |
+
pdf_path = slides_to_pdf(temp_path, output_folder_screenshot_path, saved_files)
|
236 |
+
|
237 |
+
# Cleanup
|
238 |
+
if os.path.exists(temp_path):
|
239 |
+
os.unlink(temp_path)
|
240 |
+
return pdf_path
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
if os.path.exists(temp_path):
|
244 |
+
os.unlink(temp_path)
|
245 |
+
raise gr.Error(f"处理视频时出错: {str(e)}")
|
246 |
+
return None
|
247 |
+
except Exception as e:
|
248 |
+
raise gr.Error(f"处理视频时出错: {str(e)}")
|
249 |
+
|
250 |
+
# Create a modern interface with custom CSS
|
251 |
+
css = """
|
252 |
+
.gradio-container {
|
253 |
+
font-family: 'SF Pro Display', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
|
254 |
+
}
|
255 |
+
.container {
|
256 |
+
max-width: 900px;
|
257 |
+
margin: auto;
|
258 |
+
padding: 20px;
|
259 |
+
}
|
260 |
+
.gr-button {
|
261 |
+
background: linear-gradient(90deg, #2563eb, #3b82f6);
|
262 |
+
border: none;
|
263 |
+
color: white;
|
264 |
+
}
|
265 |
+
.gr-button:hover {
|
266 |
+
background: linear-gradient(90deg, #1d4ed8, #2563eb);
|
267 |
+
transform: translateY(-1px);
|
268 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
|
269 |
+
}
|
270 |
+
.status-info {
|
271 |
+
margin-top: 10px;
|
272 |
+
padding: 10px;
|
273 |
+
border-radius: 4px;
|
274 |
+
background-color: #f3f4f6;
|
275 |
+
}
|
276 |
+
"""
|
277 |
+
|
278 |
+
with gr.Blocks(css=css) as iface:
|
279 |
+
gr.Markdown(
|
280 |
+
"""
|
281 |
+
# 🎥 视频转PDF智能助手
|
282 |
+
|
283 |
+
### 轻松将视频转换为高质量PDF文档
|
284 |
+
公众号:正经人王同学 | 全网同名
|
285 |
+
"""
|
286 |
+
)
|
287 |
+
|
288 |
+
with gr.Row():
|
289 |
+
with gr.Column():
|
290 |
+
video_input = gr.Video(label="上传视频")
|
291 |
+
video_path = gr.Textbox(label="或输入视频路径", placeholder="例如: ./input/video.mp4")
|
292 |
+
convert_btn = gr.Button("开始转换", variant="primary")
|
293 |
+
|
294 |
+
with gr.Row():
|
295 |
+
output_file = gr.File(label="下载PDF")
|
296 |
+
|
297 |
+
with gr.Row():
|
298 |
+
status = gr.Markdown(value="", elem_classes=["status-info"])
|
299 |
+
|
300 |
+
gr.Markdown(
|
301 |
+
"""
|
302 |
+
### 使用说明
|
303 |
+
1. 上传视频文件 或 输入视频文件路径
|
304 |
+
2. 点击"开始转换"按钮
|
305 |
+
3. 等待处理完成后下载生成的PDF文件
|
306 |
+
|
307 |
+
### 特点
|
308 |
+
- 智能检测视频关键帧
|
309 |
+
- 高质量PDF输出
|
310 |
+
- 支持多种视频格式
|
311 |
+
"""
|
312 |
+
)
|
313 |
+
|
314 |
+
def process_video(video, path):
|
315 |
+
if video:
|
316 |
+
return run_app(video)
|
317 |
+
elif path:
|
318 |
+
return run_app(path)
|
319 |
+
else:
|
320 |
+
raise gr.Error("请上传视频或输入视频路径")
|
321 |
+
|
322 |
+
convert_btn.click(
|
323 |
+
fn=process_video,
|
324 |
+
inputs=[video_input, video_path],
|
325 |
+
outputs=[output_file],
|
326 |
+
)
|
327 |
+
|
328 |
+
if __name__ == "__main__":
|
329 |
+
iface.launch()
|
readme.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 视频转PDF智能助手
|
2 |
+
|
3 |
+
这是一个基于 Gradio 的 Web 应用,可以将视频自动转换为 PDF 文档。应用会智能检测视频中的关键帧,并将其转换为高质量的 PDF 文件。
|
4 |
+
|
5 |
+
## 功能特点
|
6 |
+
|
7 |
+
- 智能检测视频关键帧
|
8 |
+
- 自动生成高质量PDF
|
9 |
+
- 支持多种视频格式
|
10 |
+
- 简单易用的Web界面
|
11 |
+
|
12 |
+
## 使用方法
|
13 |
+
|
14 |
+
1. 上传视频文件或输入视频路径
|
15 |
+
2. 点击"开始转换"按钮
|
16 |
+
3. 等待处理完成后下载生成的PDF
|
17 |
+
|
18 |
+
## 技术栈
|
19 |
+
|
20 |
+
- Python
|
21 |
+
- OpenCV
|
22 |
+
- Gradio
|
23 |
+
- scikit-image
|
24 |
+
- img2pdf
|
25 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python==4.8.1.78
|
2 |
+
imutils==0.5.4
|
3 |
+
scikit-image==0.22.0
|
4 |
+
gradio==4.8.0
|
5 |
+
img2pdf==0.5.1
|