Spaces:
Sleeping
Sleeping
from torch import nn as nn | |
from .create_act import create_act_layer | |
class SEModule(nn.Module): | |
def __init__(self, channels, reduction=16, act_layer=nn.ReLU, min_channels=8, reduction_channels=None, | |
gate_layer='sigmoid'): | |
super(SEModule, self).__init__() | |
reduction_channels = reduction_channels or max(channels // reduction, min_channels) | |
self.fc1 = nn.Conv2d(channels, reduction_channels, kernel_size=1, bias=True) | |
self.act = act_layer(inplace=True) | |
self.fc2 = nn.Conv2d(reduction_channels, channels, kernel_size=1, bias=True) | |
self.gate = create_act_layer(gate_layer) | |
def forward(self, x): | |
x_se = x.mean((2, 3), keepdim=True) | |
x_se = self.fc1(x_se) | |
x_se = self.act(x_se) | |
x_se = self.fc2(x_se) | |
return x * self.gate(x_se) | |
class EffectiveSEModule(nn.Module): | |
""" 'Effective Squeeze-Excitation | |
From `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 | |
""" | |
def __init__(self, channels, gate_layer='hard_sigmoid'): | |
super(EffectiveSEModule, self).__init__() | |
self.fc = nn.Conv2d(channels, channels, kernel_size=1, padding=0) | |
self.gate = create_act_layer(gate_layer, inplace=True) | |
def forward(self, x): | |
x_se = x.mean((2, 3), keepdim=True) | |
x_se = self.fc(x_se) | |
return x * self.gate(x_se) | |