Spaces:
Sleeping
Sleeping
""" Model creation / weight loading / state_dict helpers | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import logging | |
import os | |
import math | |
from collections import OrderedDict | |
from copy import deepcopy | |
from typing import Callable | |
import torch | |
import torch.nn as nn | |
import torch.utils.model_zoo as model_zoo | |
from .features import FeatureListNet, FeatureDictNet, FeatureHookNet | |
from .layers import Conv2dSame, Linear | |
_logger = logging.getLogger(__name__) | |
def load_state_dict(checkpoint_path, use_ema=False): | |
if checkpoint_path and os.path.isfile(checkpoint_path): | |
checkpoint = torch.load(checkpoint_path, map_location='cpu') | |
state_dict_key = 'state_dict' | |
if isinstance(checkpoint, dict): | |
if use_ema and 'state_dict_ema' in checkpoint: | |
state_dict_key = 'state_dict_ema' | |
if state_dict_key and state_dict_key in checkpoint: | |
new_state_dict = OrderedDict() | |
for k, v in checkpoint[state_dict_key].items(): | |
# strip `module.` prefix | |
name = k[7:] if k.startswith('module') else k | |
new_state_dict[name] = v | |
state_dict = new_state_dict | |
else: | |
state_dict = checkpoint | |
_logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path)) | |
return state_dict | |
else: | |
_logger.error("No checkpoint found at '{}'".format(checkpoint_path)) | |
raise FileNotFoundError() | |
def load_checkpoint(model, checkpoint_path, use_ema=False, strict=True): | |
state_dict = load_state_dict(checkpoint_path, use_ema) | |
model.load_state_dict(state_dict, strict=strict) | |
def resume_checkpoint(model, checkpoint_path, optimizer=None, loss_scaler=None, log_info=True): | |
resume_epoch = None | |
if os.path.isfile(checkpoint_path): | |
checkpoint = torch.load(checkpoint_path, map_location='cpu') | |
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: | |
if log_info: | |
_logger.info('Restoring model state from checkpoint...') | |
new_state_dict = OrderedDict() | |
for k, v in checkpoint['state_dict'].items(): | |
name = k[7:] if k.startswith('module') else k | |
new_state_dict[name] = v | |
model.load_state_dict(new_state_dict) | |
if optimizer is not None and 'optimizer' in checkpoint: | |
if log_info: | |
_logger.info('Restoring optimizer state from checkpoint...') | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint: | |
if log_info: | |
_logger.info('Restoring AMP loss scaler state from checkpoint...') | |
loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key]) | |
if 'epoch' in checkpoint: | |
resume_epoch = checkpoint['epoch'] | |
if 'version' in checkpoint and checkpoint['version'] > 1: | |
resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save | |
if log_info: | |
_logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch'])) | |
else: | |
model.load_state_dict(checkpoint) | |
if log_info: | |
_logger.info("Loaded checkpoint '{}'".format(checkpoint_path)) | |
return resume_epoch | |
else: | |
_logger.error("No checkpoint found at '{}'".format(checkpoint_path)) | |
raise FileNotFoundError() | |
def load_pretrained(model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, strict=True): | |
if cfg is None: | |
cfg = getattr(model, 'default_cfg') | |
if cfg is None or 'url' not in cfg or not cfg['url']: | |
_logger.warning("Pretrained model URL is invalid, using random initialization.") | |
return | |
state_dict = model_zoo.load_url(cfg['url'], progress=False, map_location='cpu') | |
if filter_fn is not None: | |
state_dict = filter_fn(state_dict) | |
if in_chans == 1: | |
conv1_name = cfg['first_conv'] | |
_logger.info('Converting first conv (%s) pretrained weights from 3 to 1 channel' % conv1_name) | |
conv1_weight = state_dict[conv1_name + '.weight'] | |
# Some weights are in torch.half, ensure it's float for sum on CPU | |
conv1_type = conv1_weight.dtype | |
conv1_weight = conv1_weight.float() | |
O, I, J, K = conv1_weight.shape | |
if I > 3: | |
assert conv1_weight.shape[1] % 3 == 0 | |
# For models with space2depth stems | |
conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K) | |
conv1_weight = conv1_weight.sum(dim=2, keepdim=False) | |
else: | |
conv1_weight = conv1_weight.sum(dim=1, keepdim=True) | |
conv1_weight = conv1_weight.to(conv1_type) | |
state_dict[conv1_name + '.weight'] = conv1_weight | |
elif in_chans != 3: | |
conv1_name = cfg['first_conv'] | |
conv1_weight = state_dict[conv1_name + '.weight'] | |
conv1_type = conv1_weight.dtype | |
conv1_weight = conv1_weight.float() | |
O, I, J, K = conv1_weight.shape | |
if I != 3: | |
_logger.warning('Deleting first conv (%s) from pretrained weights.' % conv1_name) | |
del state_dict[conv1_name + '.weight'] | |
strict = False | |
else: | |
# NOTE this strategy should be better than random init, but there could be other combinations of | |
# the original RGB input layer weights that'd work better for specific cases. | |
_logger.info('Repeating first conv (%s) weights in channel dim.' % conv1_name) | |
repeat = int(math.ceil(in_chans / 3)) | |
conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] | |
conv1_weight *= (3 / float(in_chans)) | |
conv1_weight = conv1_weight.to(conv1_type) | |
state_dict[conv1_name + '.weight'] = conv1_weight | |
classifier_name = cfg['classifier'] | |
if num_classes == 1000 and cfg['num_classes'] == 1001: | |
# special case for imagenet trained models with extra background class in pretrained weights | |
classifier_weight = state_dict[classifier_name + '.weight'] | |
state_dict[classifier_name + '.weight'] = classifier_weight[1:] | |
classifier_bias = state_dict[classifier_name + '.bias'] | |
state_dict[classifier_name + '.bias'] = classifier_bias[1:] | |
elif num_classes != cfg['num_classes']: | |
# completely discard fully connected for all other differences between pretrained and created model | |
del state_dict[classifier_name + '.weight'] | |
del state_dict[classifier_name + '.bias'] | |
strict = False | |
model.load_state_dict(state_dict, strict=strict) | |
def extract_layer(model, layer): | |
layer = layer.split('.') | |
module = model | |
if hasattr(model, 'module') and layer[0] != 'module': | |
module = model.module | |
if not hasattr(model, 'module') and layer[0] == 'module': | |
layer = layer[1:] | |
for l in layer: | |
if hasattr(module, l): | |
if not l.isdigit(): | |
module = getattr(module, l) | |
else: | |
module = module[int(l)] | |
else: | |
return module | |
return module | |
def set_layer(model, layer, val): | |
layer = layer.split('.') | |
module = model | |
if hasattr(model, 'module') and layer[0] != 'module': | |
module = model.module | |
lst_index = 0 | |
module2 = module | |
for l in layer: | |
if hasattr(module2, l): | |
if not l.isdigit(): | |
module2 = getattr(module2, l) | |
else: | |
module2 = module2[int(l)] | |
lst_index += 1 | |
lst_index -= 1 | |
for l in layer[:lst_index]: | |
if not l.isdigit(): | |
module = getattr(module, l) | |
else: | |
module = module[int(l)] | |
l = layer[lst_index] | |
setattr(module, l, val) | |
def adapt_model_from_string(parent_module, model_string): | |
separator = '***' | |
state_dict = {} | |
lst_shape = model_string.split(separator) | |
for k in lst_shape: | |
k = k.split(':') | |
key = k[0] | |
shape = k[1][1:-1].split(',') | |
if shape[0] != '': | |
state_dict[key] = [int(i) for i in shape] | |
new_module = deepcopy(parent_module) | |
for n, m in parent_module.named_modules(): | |
old_module = extract_layer(parent_module, n) | |
if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame): | |
if isinstance(old_module, Conv2dSame): | |
conv = Conv2dSame | |
else: | |
conv = nn.Conv2d | |
s = state_dict[n + '.weight'] | |
in_channels = s[1] | |
out_channels = s[0] | |
g = 1 | |
if old_module.groups > 1: | |
in_channels = out_channels | |
g = in_channels | |
new_conv = conv( | |
in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size, | |
bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation, | |
groups=g, stride=old_module.stride) | |
set_layer(new_module, n, new_conv) | |
if isinstance(old_module, nn.BatchNorm2d): | |
new_bn = nn.BatchNorm2d( | |
num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, | |
affine=old_module.affine, track_running_stats=True) | |
set_layer(new_module, n, new_bn) | |
if isinstance(old_module, nn.Linear): | |
# FIXME extra checks to ensure this is actually the FC classifier layer and not a diff Linear layer? | |
num_features = state_dict[n + '.weight'][1] | |
new_fc = Linear( | |
in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None) | |
set_layer(new_module, n, new_fc) | |
if hasattr(new_module, 'num_features'): | |
new_module.num_features = num_features | |
new_module.eval() | |
parent_module.eval() | |
return new_module | |
def adapt_model_from_file(parent_module, model_variant): | |
adapt_file = os.path.join(os.path.dirname(__file__), 'pruned', model_variant + '.txt') | |
with open(adapt_file, 'r') as f: | |
return adapt_model_from_string(parent_module, f.read().strip()) | |
def default_cfg_for_features(default_cfg): | |
default_cfg = deepcopy(default_cfg) | |
# remove default pretrained cfg fields that don't have much relevance for feature backbone | |
to_remove = ('num_classes', 'crop_pct', 'classifier') # add default final pool size? | |
for tr in to_remove: | |
default_cfg.pop(tr, None) | |
return default_cfg | |
def build_model_with_cfg( | |
model_cls: Callable, | |
variant: str, | |
pretrained: bool, | |
default_cfg: dict, | |
model_cfg: dict = None, | |
feature_cfg: dict = None, | |
pretrained_strict: bool = True, | |
pretrained_filter_fn: Callable = None, | |
**kwargs): | |
pruned = kwargs.pop('pruned', False) | |
features = False | |
feature_cfg = feature_cfg or {} | |
if kwargs.pop('features_only', False): | |
features = True | |
feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4)) | |
if 'out_indices' in kwargs: | |
feature_cfg['out_indices'] = kwargs.pop('out_indices') | |
model = model_cls(**kwargs) if model_cfg is None else model_cls(cfg=model_cfg, **kwargs) | |
model.default_cfg = deepcopy(default_cfg) | |
if pruned: | |
model = adapt_model_from_file(model, variant) | |
# for classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats | |
num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000)) | |
if pretrained: | |
load_pretrained( | |
model, | |
num_classes=num_classes_pretrained, in_chans=kwargs.get('in_chans', 3), | |
filter_fn=pretrained_filter_fn, strict=pretrained_strict) | |
if features: | |
feature_cls = FeatureListNet | |
if 'feature_cls' in feature_cfg: | |
feature_cls = feature_cfg.pop('feature_cls') | |
if isinstance(feature_cls, str): | |
feature_cls = feature_cls.lower() | |
if 'hook' in feature_cls: | |
feature_cls = FeatureHookNet | |
else: | |
assert False, f'Unknown feature class {feature_cls}' | |
model = feature_cls(model, **feature_cfg) | |
model.default_cfg = default_cfg_for_features(default_cfg) # add back default_cfg | |
return model | |