Spaces:
Sleeping
Sleeping
File size: 53,547 Bytes
28c6826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 |
"""PyTorch ResNet
This started as a copy of https://github.com/pytorch/vision 'resnet.py' (BSD-3-Clause) with
additional dropout and dynamic global avg/max pool.
ResNeXt, SE-ResNeXt, SENet, and MXNet Gluon stem/downsample variants, tiered stems added by Ross Wightman
Copyright 2020 Ross Wightman
"""
import math
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import DropBlock2d, DropPath, AvgPool2dSame, BlurPool2d, create_attn, create_classifier
from .registry import register_model
__all__ = ['ResNet', 'BasicBlock', 'Bottleneck'] # model_registry will add each entrypoint fn to this
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv1', 'classifier': 'fc',
**kwargs
}
default_cfgs = {
# ResNet and Wide ResNet
'resnet18': _cfg(url='https://download.pytorch.org/models/resnet18-5c106cde.pth'),
'resnet18d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet18d_ra2-48a79e06.pth',
interpolation='bicubic', first_conv='conv1.0'),
'resnet34': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth'),
'resnet34d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34d_ra2-f8dcfcaf.pth',
interpolation='bicubic', first_conv='conv1.0'),
'resnet26': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth',
interpolation='bicubic'),
'resnet26d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth',
interpolation='bicubic', first_conv='conv1.0'),
'resnet50': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth',
interpolation='bicubic'),
'resnet50d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth',
interpolation='bicubic', first_conv='conv1.0'),
'resnet66d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
'resnet101': _cfg(url='', interpolation='bicubic'),
'resnet101d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
'resnet152': _cfg(url='', interpolation='bicubic'),
'resnet152d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
'resnet200': _cfg(url='', interpolation='bicubic'),
'resnet200d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
'tv_resnet34': _cfg(url='https://download.pytorch.org/models/resnet34-333f7ec4.pth'),
'tv_resnet50': _cfg(url='https://download.pytorch.org/models/resnet50-19c8e357.pth'),
'tv_resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'),
'tv_resnet152': _cfg(url='https://download.pytorch.org/models/resnet152-b121ed2d.pth'),
'wide_resnet50_2': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/wide_resnet50_racm-8234f177.pth',
interpolation='bicubic'),
'wide_resnet101_2': _cfg(url='https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth'),
# ResNeXt
'resnext50_32x4d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50_32x4d_ra-d733960d.pth',
interpolation='bicubic'),
'resnext50d_32x4d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth',
interpolation='bicubic',
first_conv='conv1.0'),
'resnext101_32x4d': _cfg(url=''),
'resnext101_32x8d': _cfg(url='https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth'),
'resnext101_64x4d': _cfg(url=''),
'tv_resnext50_32x4d': _cfg(url='https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth'),
# ResNeXt models - Weakly Supervised Pretraining on Instagram Hashtags
# from https://github.com/facebookresearch/WSL-Images
# Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only.
'ig_resnext101_32x8d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth'),
'ig_resnext101_32x16d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth'),
'ig_resnext101_32x32d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth'),
'ig_resnext101_32x48d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth'),
# Semi-Supervised ResNe*t models from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
# Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only.
'ssl_resnet18': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth'),
'ssl_resnet50': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth'),
'ssl_resnext50_32x4d': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth'),
'ssl_resnext101_32x4d': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth'),
'ssl_resnext101_32x8d': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth'),
'ssl_resnext101_32x16d': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth'),
# Semi-Weakly Supervised ResNe*t models from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
# Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only.
'swsl_resnet18': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth'),
'swsl_resnet50': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth'),
'swsl_resnext50_32x4d': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth'),
'swsl_resnext101_32x4d': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth'),
'swsl_resnext101_32x8d': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth'),
'swsl_resnext101_32x16d': _cfg(
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth'),
# Squeeze-Excitation ResNets, to eventually replace the models in senet.py
'seresnet18': _cfg(
url='',
interpolation='bicubic'),
'seresnet34': _cfg(
url='',
interpolation='bicubic'),
'seresnet50': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet50_ra_224-8efdb4bb.pth',
interpolation='bicubic'),
'seresnet50tn': _cfg(
url='',
interpolation='bicubic',
first_conv='conv1.0'),
'seresnet101': _cfg(
url='',
interpolation='bicubic'),
'seresnet152': _cfg(
url='',
interpolation='bicubic'),
# Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py
'seresnext26_32x4d': _cfg(
url='',
interpolation='bicubic'),
'seresnext26d_32x4d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26d_32x4d-80fa48a3.pth',
interpolation='bicubic',
first_conv='conv1.0'),
'seresnext26t_32x4d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26t_32x4d-361bc1c4.pth',
interpolation='bicubic',
first_conv='conv1.0'),
'seresnext26tn_32x4d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26tn_32x4d-569cb627.pth',
interpolation='bicubic',
first_conv='conv1.0'),
'seresnext50_32x4d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext50_32x4d_racm-a304a460.pth',
interpolation='bicubic'),
'seresnext101_32x4d': _cfg(
url='',
interpolation='bicubic'),
'seresnext101_32x8d': _cfg(
url='',
interpolation='bicubic'),
'senet154': _cfg(
url='',
interpolation='bicubic',
first_conv='conv1.0'),
# Efficient Channel Attention ResNets
'ecaresnet18': _cfg(),
'ecaresnet50': _cfg(),
'ecaresnetlight': _cfg(
url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNetLight_4f34b35b.pth',
interpolation='bicubic'),
'ecaresnet50d': _cfg(
url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet50D_833caf58.pth',
interpolation='bicubic',
first_conv='conv1.0'),
'ecaresnet50d_pruned': _cfg(
url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45899/outputs/ECAResNet50D_P_9c67f710.pth',
interpolation='bicubic',
first_conv='conv1.0'),
'ecaresnet101d': _cfg(
url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet101D_281c5844.pth',
interpolation='bicubic',
first_conv='conv1.0'),
'ecaresnet101d_pruned': _cfg(
url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45610/outputs/ECAResNet101D_P_75a3370e.pth',
interpolation='bicubic',
first_conv='conv1.0'),
# Efficient Channel Attention ResNeXts
'ecaresnext26tn_32x4d': _cfg(
url='',
interpolation='bicubic',
first_conv='conv1.0'),
'ecaresnext50_32x4d': _cfg(
url='',
interpolation='bicubic'),
# ResNets with anti-aliasing blur pool
'resnetblur18': _cfg(
interpolation='bicubic'),
'resnetblur50': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth',
interpolation='bicubic')
}
def get_padding(kernel_size, stride, dilation=1):
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
return padding
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64,
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
super(BasicBlock, self).__init__()
assert cardinality == 1, 'BasicBlock only supports cardinality of 1'
assert base_width == 64, 'BasicBlock does not support changing base width'
first_planes = planes // reduce_first
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation)
self.conv1 = nn.Conv2d(
inplanes, first_planes, kernel_size=3, stride=1 if use_aa else stride, padding=first_dilation,
dilation=first_dilation, bias=False)
self.bn1 = norm_layer(first_planes)
self.act1 = act_layer(inplace=True)
self.aa = aa_layer(channels=first_planes, stride=stride) if use_aa else None
self.conv2 = nn.Conv2d(
first_planes, outplanes, kernel_size=3, padding=dilation, dilation=dilation, bias=False)
self.bn2 = norm_layer(outplanes)
self.se = create_attn(attn_layer, outplanes)
self.act2 = act_layer(inplace=True)
self.downsample = downsample
self.stride = stride
self.dilation = dilation
self.drop_block = drop_block
self.drop_path = drop_path
def zero_init_last_bn(self):
nn.init.zeros_(self.bn2.weight)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.bn1(x)
if self.drop_block is not None:
x = self.drop_block(x)
x = self.act1(x)
if self.aa is not None:
x = self.aa(x)
x = self.conv2(x)
x = self.bn2(x)
if self.drop_block is not None:
x = self.drop_block(x)
if self.se is not None:
x = self.se(x)
if self.drop_path is not None:
x = self.drop_path(x)
if self.downsample is not None:
residual = self.downsample(residual)
x += residual
x = self.act2(x)
return x
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64,
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
super(Bottleneck, self).__init__()
width = int(math.floor(planes * (base_width / 64)) * cardinality)
first_planes = width // reduce_first
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation)
self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False)
self.bn1 = norm_layer(first_planes)
self.act1 = act_layer(inplace=True)
self.conv2 = nn.Conv2d(
first_planes, width, kernel_size=3, stride=1 if use_aa else stride,
padding=first_dilation, dilation=first_dilation, groups=cardinality, bias=False)
self.bn2 = norm_layer(width)
self.act2 = act_layer(inplace=True)
self.aa = aa_layer(channels=width, stride=stride) if use_aa else None
self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False)
self.bn3 = norm_layer(outplanes)
self.se = create_attn(attn_layer, outplanes)
self.act3 = act_layer(inplace=True)
self.downsample = downsample
self.stride = stride
self.dilation = dilation
self.drop_block = drop_block
self.drop_path = drop_path
def zero_init_last_bn(self):
nn.init.zeros_(self.bn3.weight)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.bn1(x)
if self.drop_block is not None:
x = self.drop_block(x)
x = self.act1(x)
x = self.conv2(x)
x = self.bn2(x)
if self.drop_block is not None:
x = self.drop_block(x)
x = self.act2(x)
if self.aa is not None:
x = self.aa(x)
x = self.conv3(x)
x = self.bn3(x)
if self.drop_block is not None:
x = self.drop_block(x)
if self.se is not None:
x = self.se(x)
if self.drop_path is not None:
x = self.drop_path(x)
if self.downsample is not None:
residual = self.downsample(residual)
x += residual
x = self.act3(x)
return x
def downsample_conv(
in_channels, out_channels, kernel_size, stride=1, dilation=1, first_dilation=None, norm_layer=None):
norm_layer = norm_layer or nn.BatchNorm2d
kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size
first_dilation = (first_dilation or dilation) if kernel_size > 1 else 1
p = get_padding(kernel_size, stride, first_dilation)
return nn.Sequential(*[
nn.Conv2d(
in_channels, out_channels, kernel_size, stride=stride, padding=p, dilation=first_dilation, bias=False),
norm_layer(out_channels)
])
def downsample_avg(
in_channels, out_channels, kernel_size, stride=1, dilation=1, first_dilation=None, norm_layer=None):
norm_layer = norm_layer or nn.BatchNorm2d
avg_stride = stride if dilation == 1 else 1
if stride == 1 and dilation == 1:
pool = nn.Identity()
else:
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
return nn.Sequential(*[
pool,
nn.Conv2d(in_channels, out_channels, 1, stride=1, padding=0, bias=False),
norm_layer(out_channels)
])
def drop_blocks(drop_block_rate=0.):
return [
None, None,
DropBlock2d(drop_block_rate, 5, 0.25) if drop_block_rate else None,
DropBlock2d(drop_block_rate, 3, 1.00) if drop_block_rate else None]
def make_blocks(
block_fn, channels, block_repeats, inplanes, reduce_first=1, output_stride=32,
down_kernel_size=1, avg_down=False, drop_block_rate=0., drop_path_rate=0., **kwargs):
stages = []
feature_info = []
net_num_blocks = sum(block_repeats)
net_block_idx = 0
net_stride = 4
dilation = prev_dilation = 1
for stage_idx, (planes, num_blocks, db) in enumerate(zip(channels, block_repeats, drop_blocks(drop_block_rate))):
stage_name = f'layer{stage_idx + 1}' # never liked this name, but weight compat requires it
stride = 1 if stage_idx == 0 else 2
if net_stride >= output_stride:
dilation *= stride
stride = 1
else:
net_stride *= stride
downsample = None
if stride != 1 or inplanes != planes * block_fn.expansion:
down_kwargs = dict(
in_channels=inplanes, out_channels=planes * block_fn.expansion, kernel_size=down_kernel_size,
stride=stride, dilation=dilation, first_dilation=prev_dilation, norm_layer=kwargs.get('norm_layer'))
downsample = downsample_avg(**down_kwargs) if avg_down else downsample_conv(**down_kwargs)
block_kwargs = dict(reduce_first=reduce_first, dilation=dilation, drop_block=db, **kwargs)
blocks = []
for block_idx in range(num_blocks):
downsample = downsample if block_idx == 0 else None
stride = stride if block_idx == 0 else 1
block_dpr = drop_path_rate * net_block_idx / (net_num_blocks - 1) # stochastic depth linear decay rule
blocks.append(block_fn(
inplanes, planes, stride, downsample, first_dilation=prev_dilation,
drop_path=DropPath(block_dpr) if block_dpr > 0. else None, **block_kwargs))
prev_dilation = dilation
inplanes = planes * block_fn.expansion
net_block_idx += 1
stages.append((stage_name, nn.Sequential(*blocks)))
feature_info.append(dict(num_chs=inplanes, reduction=net_stride, module=stage_name))
return stages, feature_info
class ResNet(nn.Module):
"""ResNet / ResNeXt / SE-ResNeXt / SE-Net
This class implements all variants of ResNet, ResNeXt, SE-ResNeXt, and SENet that
* have > 1 stride in the 3x3 conv layer of bottleneck
* have conv-bn-act ordering
This ResNet impl supports a number of stem and downsample options based on the v1c, v1d, v1e, and v1s
variants included in the MXNet Gluon ResNetV1b model. The C and D variants are also discussed in the
'Bag of Tricks' paper: https://arxiv.org/pdf/1812.01187. The B variant is equivalent to torchvision default.
ResNet variants (the same modifications can be used in SE/ResNeXt models as well):
* normal, b - 7x7 stem, stem_width = 64, same as torchvision ResNet, NVIDIA ResNet 'v1.5', Gluon v1b
* c - 3 layer deep 3x3 stem, stem_width = 32 (32, 32, 64)
* d - 3 layer deep 3x3 stem, stem_width = 32 (32, 32, 64), average pool in downsample
* e - 3 layer deep 3x3 stem, stem_width = 64 (64, 64, 128), average pool in downsample
* s - 3 layer deep 3x3 stem, stem_width = 64 (64, 64, 128)
* t - 3 layer deep 3x3 stem, stem width = 32 (24, 48, 64), average pool in downsample
* tn - 3 layer deep 3x3 stem, stem width = 32 (24, 32, 64), average pool in downsample
ResNeXt
* normal - 7x7 stem, stem_width = 64, standard cardinality and base widths
* same c,d, e, s variants as ResNet can be enabled
SE-ResNeXt
* normal - 7x7 stem, stem_width = 64
* same c, d, e, s variants as ResNet can be enabled
SENet-154 - 3 layer deep 3x3 stem (same as v1c-v1s), stem_width = 64, cardinality=64,
reduction by 2 on width of first bottleneck convolution, 3x3 downsample convs after first block
Parameters
----------
block : Block
Class for the residual block. Options are BasicBlockGl, BottleneckGl.
layers : list of int
Numbers of layers in each block
num_classes : int, default 1000
Number of classification classes.
in_chans : int, default 3
Number of input (color) channels.
cardinality : int, default 1
Number of convolution groups for 3x3 conv in Bottleneck.
base_width : int, default 64
Factor determining bottleneck channels. `planes * base_width / 64 * cardinality`
stem_width : int, default 64
Number of channels in stem convolutions
stem_type : str, default ''
The type of stem:
* '', default - a single 7x7 conv with a width of stem_width
* 'deep' - three 3x3 convolution layers of widths stem_width, stem_width, stem_width * 2
* 'deep_tiered' - three 3x3 conv layers of widths stem_width//4 * 3, stem_width//4 * 6, stem_width * 2
* 'deep_tiered_narrow' - three 3x3 conv layers of widths stem_width//4 * 3, stem_width, stem_width * 2
block_reduce_first: int, default 1
Reduction factor for first convolution output width of residual blocks,
1 for all archs except senets, where 2
down_kernel_size: int, default 1
Kernel size of residual block downsampling path, 1x1 for most archs, 3x3 for senets
avg_down : bool, default False
Whether to use average pooling for projection skip connection between stages/downsample.
output_stride : int, default 32
Set the output stride of the network, 32, 16, or 8. Typically used in segmentation.
act_layer : nn.Module, activation layer
norm_layer : nn.Module, normalization layer
aa_layer : nn.Module, anti-aliasing layer
drop_rate : float, default 0.
Dropout probability before classifier, for training
global_pool : str, default 'avg'
Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax'
"""
def __init__(self, block, layers, num_classes=1000, in_chans=3,
cardinality=1, base_width=64, stem_width=64, stem_type='',
output_stride=32, block_reduce_first=1, down_kernel_size=1, avg_down=False,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_rate=0.0, drop_path_rate=0.,
drop_block_rate=0., global_pool='avg', zero_init_last_bn=True, block_args=None):
block_args = block_args or dict()
assert output_stride in (8, 16, 32)
self.num_classes = num_classes
self.drop_rate = drop_rate
super(ResNet, self).__init__()
# Stem
deep_stem = 'deep' in stem_type
inplanes = stem_width * 2 if deep_stem else 64
if deep_stem:
stem_chs_1 = stem_chs_2 = stem_width
if 'tiered' in stem_type:
stem_chs_1 = 3 * (stem_width // 4)
stem_chs_2 = stem_width if 'narrow' in stem_type else 6 * (stem_width // 4)
self.conv1 = nn.Sequential(*[
nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False),
norm_layer(stem_chs_1),
act_layer(inplace=True),
nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False),
norm_layer(stem_chs_2),
act_layer(inplace=True),
nn.Conv2d(stem_chs_2, inplanes, 3, stride=1, padding=1, bias=False)])
else:
self.conv1 = nn.Conv2d(in_chans, inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(inplanes)
self.act1 = act_layer(inplace=True)
self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')]
# Stem Pooling
if aa_layer is not None:
self.maxpool = nn.Sequential(*[
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
aa_layer(channels=inplanes, stride=2)])
else:
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# Feature Blocks
channels = [64, 128, 256, 512]
stage_modules, stage_feature_info = make_blocks(
block, channels, layers, inplanes, cardinality=cardinality, base_width=base_width,
output_stride=output_stride, reduce_first=block_reduce_first, avg_down=avg_down,
down_kernel_size=down_kernel_size, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer,
drop_block_rate=drop_block_rate, drop_path_rate=drop_path_rate, **block_args)
for stage in stage_modules:
self.add_module(*stage) # layer1, layer2, etc
self.feature_info.extend(stage_feature_info)
# Head (Pooling and Classifier)
self.num_features = 512 * block.expansion
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
for n, m in self.named_modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1.)
nn.init.constant_(m.bias, 0.)
if zero_init_last_bn:
for m in self.modules():
if hasattr(m, 'zero_init_last_bn'):
m.zero_init_last_bn()
def get_classifier(self):
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.act1(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x)
if self.drop_rate:
x = F.dropout(x, p=float(self.drop_rate), training=self.training)
x = self.fc(x)
return x
def _create_resnet(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
ResNet, variant, default_cfg=default_cfgs[variant], pretrained=pretrained, **kwargs)
@register_model
def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
"""
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], **kwargs)
return _create_resnet('resnet18', pretrained, **model_args)
@register_model
def resnet18d(pretrained=False, **kwargs):
"""Constructs a ResNet-18-D model.
"""
model_args = dict(
block=BasicBlock, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('resnet18d', pretrained, **model_args)
@register_model
def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
"""
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('resnet34', pretrained, **model_args)
@register_model
def resnet34d(pretrained=False, **kwargs):
"""Constructs a ResNet-34-D model.
"""
model_args = dict(
block=BasicBlock, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('resnet34d', pretrained, **model_args)
@register_model
def resnet26(pretrained=False, **kwargs):
"""Constructs a ResNet-26 model.
"""
model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], **kwargs)
return _create_resnet('resnet26', pretrained, **model_args)
@register_model
def resnet26d(pretrained=False, **kwargs):
"""Constructs a ResNet-26-D model.
"""
model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('resnet26d', pretrained, **model_args)
@register_model
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('resnet50', pretrained, **model_args)
@register_model
def resnet50d(pretrained=False, **kwargs):
"""Constructs a ResNet-50-D model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('resnet50d', pretrained, **model_args)
@register_model
def resnet66d(pretrained=False, **kwargs):
"""Constructs a ResNet-66-D model.
"""
model_args = dict(block=BasicBlock, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('resnet66d', pretrained, **model_args)
@register_model
def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], **kwargs)
return _create_resnet('resnet101', pretrained, **model_args)
@register_model
def resnet101d(pretrained=False, **kwargs):
"""Constructs a ResNet-101-D model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('resnet101d', pretrained, **model_args)
@register_model
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], **kwargs)
return _create_resnet('resnet152', pretrained, **model_args)
@register_model
def resnet152d(pretrained=False, **kwargs):
"""Constructs a ResNet-152-D model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('resnet152d', pretrained, **model_args)
@register_model
def resnet200(pretrained=False, **kwargs):
"""Constructs a ResNet-200 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 24, 36, 3], **kwargs)
return _create_resnet('resnet200', pretrained, **model_args)
@register_model
def resnet200d(pretrained=False, **kwargs):
"""Constructs a ResNet-200-D model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('resnet200d', pretrained, **model_args)
@register_model
def tv_resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model with original Torchvision weights.
"""
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('tv_resnet34', pretrained, **model_args)
@register_model
def tv_resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model with original Torchvision weights.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('tv_resnet50', pretrained, **model_args)
@register_model
def tv_resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model w/ Torchvision pretrained weights.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], **kwargs)
return _create_resnet('tv_resnet101', pretrained, **model_args)
@register_model
def tv_resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model w/ Torchvision pretrained weights.
"""
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], **kwargs)
return _create_resnet('tv_resnet152', pretrained, **model_args)
@register_model
def wide_resnet50_2(pretrained=False, **kwargs):
"""Constructs a Wide ResNet-50-2 model.
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], base_width=128, **kwargs)
return _create_resnet('wide_resnet50_2', pretrained, **model_args)
@register_model
def wide_resnet101_2(pretrained=False, **kwargs):
"""Constructs a Wide ResNet-101-2 model.
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], base_width=128, **kwargs)
return _create_resnet('wide_resnet101_2', pretrained, **model_args)
@register_model
def resnext50_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt50-32x4d model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, **kwargs)
return _create_resnet('resnext50_32x4d', pretrained, **model_args)
@register_model
def resnext50d_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt50d-32x4d model. ResNext50 w/ deep stem & avg pool downsample
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4,
stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('resnext50d_32x4d', pretrained, **model_args)
@register_model
def resnext101_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt-101 32x4d model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4, **kwargs)
return _create_resnet('resnext101_32x4d', pretrained, **model_args)
@register_model
def resnext101_32x8d(pretrained=False, **kwargs):
"""Constructs a ResNeXt-101 32x8d model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, **kwargs)
return _create_resnet('resnext101_32x8d', pretrained, **model_args)
@register_model
def resnext101_64x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt101-64x4d model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=64, base_width=4, **kwargs)
return _create_resnet('resnext101_64x4d', pretrained, **model_args)
@register_model
def tv_resnext50_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt50-32x4d model with original Torchvision weights.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, **kwargs)
return _create_resnet('tv_resnext50_32x4d', pretrained, **model_args)
@register_model
def ig_resnext101_32x8d(pretrained=True, **kwargs):
"""Constructs a ResNeXt-101 32x8 model pre-trained on weakly-supervised data
and finetuned on ImageNet from Figure 5 in
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, **kwargs)
return _create_resnet('ig_resnext101_32x8d', pretrained, **model_args)
@register_model
def ig_resnext101_32x16d(pretrained=True, **kwargs):
"""Constructs a ResNeXt-101 32x16 model pre-trained on weakly-supervised data
and finetuned on ImageNet from Figure 5 in
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16, **kwargs)
return _create_resnet('ig_resnext101_32x16d', pretrained, **model_args)
@register_model
def ig_resnext101_32x32d(pretrained=True, **kwargs):
"""Constructs a ResNeXt-101 32x32 model pre-trained on weakly-supervised data
and finetuned on ImageNet from Figure 5 in
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=32, **kwargs)
return _create_resnet('ig_resnext101_32x32d', pretrained, **model_args)
@register_model
def ig_resnext101_32x48d(pretrained=True, **kwargs):
"""Constructs a ResNeXt-101 32x48 model pre-trained on weakly-supervised data
and finetuned on ImageNet from Figure 5 in
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=48, **kwargs)
return _create_resnet('ig_resnext101_32x48d', pretrained, **model_args)
@register_model
def ssl_resnet18(pretrained=True, **kwargs):
"""Constructs a semi-supervised ResNet-18 model pre-trained on YFCC100M dataset and finetuned on ImageNet
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], **kwargs)
return _create_resnet('ssl_resnet18', pretrained, **model_args)
@register_model
def ssl_resnet50(pretrained=True, **kwargs):
"""Constructs a semi-supervised ResNet-50 model pre-trained on YFCC100M dataset and finetuned on ImageNet
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('ssl_resnet50', pretrained, **model_args)
@register_model
def ssl_resnext50_32x4d(pretrained=True, **kwargs):
"""Constructs a semi-supervised ResNeXt-50 32x4 model pre-trained on YFCC100M dataset and finetuned on ImageNet
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, **kwargs)
return _create_resnet('ssl_resnext50_32x4d', pretrained, **model_args)
@register_model
def ssl_resnext101_32x4d(pretrained=True, **kwargs):
"""Constructs a semi-supervised ResNeXt-101 32x4 model pre-trained on YFCC100M dataset and finetuned on ImageNet
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4, **kwargs)
return _create_resnet('ssl_resnext101_32x4d', pretrained, **model_args)
@register_model
def ssl_resnext101_32x8d(pretrained=True, **kwargs):
"""Constructs a semi-supervised ResNeXt-101 32x8 model pre-trained on YFCC100M dataset and finetuned on ImageNet
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, **kwargs)
return _create_resnet('ssl_resnext101_32x8d', pretrained, **model_args)
@register_model
def ssl_resnext101_32x16d(pretrained=True, **kwargs):
"""Constructs a semi-supervised ResNeXt-101 32x16 model pre-trained on YFCC100M dataset and finetuned on ImageNet
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16, **kwargs)
return _create_resnet('ssl_resnext101_32x16d', pretrained, **model_args)
@register_model
def swsl_resnet18(pretrained=True, **kwargs):
"""Constructs a semi-weakly supervised Resnet-18 model pre-trained on 1B weakly supervised
image dataset and finetuned on ImageNet.
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], **kwargs)
return _create_resnet('swsl_resnet18', pretrained, **model_args)
@register_model
def swsl_resnet50(pretrained=True, **kwargs):
"""Constructs a semi-weakly supervised ResNet-50 model pre-trained on 1B weakly supervised
image dataset and finetuned on ImageNet.
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('swsl_resnet50', pretrained, **model_args)
@register_model
def swsl_resnext50_32x4d(pretrained=True, **kwargs):
"""Constructs a semi-weakly supervised ResNeXt-50 32x4 model pre-trained on 1B weakly supervised
image dataset and finetuned on ImageNet.
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, **kwargs)
return _create_resnet('swsl_resnext50_32x4d', pretrained, **model_args)
@register_model
def swsl_resnext101_32x4d(pretrained=True, **kwargs):
"""Constructs a semi-weakly supervised ResNeXt-101 32x4 model pre-trained on 1B weakly supervised
image dataset and finetuned on ImageNet.
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4, **kwargs)
return _create_resnet('swsl_resnext101_32x4d', pretrained, **model_args)
@register_model
def swsl_resnext101_32x8d(pretrained=True, **kwargs):
"""Constructs a semi-weakly supervised ResNeXt-101 32x8 model pre-trained on 1B weakly supervised
image dataset and finetuned on ImageNet.
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, **kwargs)
return _create_resnet('swsl_resnext101_32x8d', pretrained, **model_args)
@register_model
def swsl_resnext101_32x16d(pretrained=True, **kwargs):
"""Constructs a semi-weakly supervised ResNeXt-101 32x16 model pre-trained on 1B weakly supervised
image dataset and finetuned on ImageNet.
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16, **kwargs)
return _create_resnet('swsl_resnext101_32x16d', pretrained, **model_args)
@register_model
def ecaresnet18(pretrained=False, **kwargs):
""" Constructs an ECA-ResNet-18 model.
"""
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], block_args=dict(attn_layer='eca'), **kwargs)
return _create_resnet('ecaresnet18', pretrained, **model_args)
@register_model
def ecaresnet50(pretrained=False, **kwargs):
"""Constructs an ECA-ResNet-50 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], block_args=dict(attn_layer='eca'), **kwargs)
return _create_resnet('ecaresnet50', pretrained, **model_args)
@register_model
def ecaresnet50d(pretrained=False, **kwargs):
"""Constructs a ResNet-50-D model with eca.
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs)
return _create_resnet('ecaresnet50d', pretrained, **model_args)
@register_model
def ecaresnet50d_pruned(pretrained=False, **kwargs):
"""Constructs a ResNet-50-D model pruned with eca.
The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs)
return _create_resnet('ecaresnet50d_pruned', pretrained, pruned=True, **model_args)
@register_model
def ecaresnetlight(pretrained=False, **kwargs):
"""Constructs a ResNet-50-D light model with eca.
"""
model_args = dict(
block=Bottleneck, layers=[1, 1, 11, 3], stem_width=32, avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs)
return _create_resnet('ecaresnetlight', pretrained, **model_args)
@register_model
def ecaresnet101d(pretrained=False, **kwargs):
"""Constructs a ResNet-101-D model with eca.
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs)
return _create_resnet('ecaresnet101d', pretrained, **model_args)
@register_model
def ecaresnet101d_pruned(pretrained=False, **kwargs):
"""Constructs a ResNet-101-D model pruned with eca.
The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs)
return _create_resnet('ecaresnet101d_pruned', pretrained, pruned=True, **model_args)
@register_model
def ecaresnext26tn_32x4d(pretrained=False, **kwargs):
"""Constructs an ECA-ResNeXt-26-TN model.
This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels
in the deep stem. The channel number of the middle stem conv is narrower than the 'T' variant.
this model replaces SE module with the ECA module
"""
model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32,
stem_type='deep_tiered_narrow', avg_down=True, block_args=dict(attn_layer='eca'), **kwargs)
return _create_resnet('ecaresnext26tn_32x4d', pretrained, **model_args)
@register_model
def resnetblur18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model with blur anti-aliasing
"""
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], aa_layer=BlurPool2d, **kwargs)
return _create_resnet('resnetblur18', pretrained, **model_args)
@register_model
def resnetblur50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model with blur anti-aliasing
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=BlurPool2d, **kwargs)
return _create_resnet('resnetblur50', pretrained, **model_args)
@register_model
def seresnet18(pretrained=False, **kwargs):
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnet18', pretrained, **model_args)
@register_model
def seresnet34(pretrained=False, **kwargs):
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnet34', pretrained, **model_args)
@register_model
def seresnet50(pretrained=False, **kwargs):
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnet50', pretrained, **model_args)
@register_model
def seresnet50tn(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered_narrow', avg_down=True,
block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnet50tn', pretrained, **model_args)
@register_model
def seresnet101(pretrained=False, **kwargs):
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnet101', pretrained, **model_args)
@register_model
def seresnet152(pretrained=False, **kwargs):
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnet152', pretrained, **model_args)
@register_model
def seresnext26_32x4d(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4,
block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnext26_32x4d', pretrained, **model_args)
@register_model
def seresnext26d_32x4d(pretrained=False, **kwargs):
"""Constructs a SE-ResNeXt-26-D model.`
This is technically a 28 layer ResNet, using the 'D' modifier from Gluon / bag-of-tricks for
combination of deep stem and avg_pool in downsample.
"""
model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32,
stem_type='deep', avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnext26d_32x4d', pretrained, **model_args)
@register_model
def seresnext26t_32x4d(pretrained=False, **kwargs):
"""Constructs a SE-ResNet-26-T model.
This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 48, 64 channels
in the deep stem.
"""
model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32,
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnext26t_32x4d', pretrained, **model_args)
@register_model
def seresnext26tn_32x4d(pretrained=False, **kwargs):
"""Constructs a SE-ResNeXt-26-TN model.
This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels
in the deep stem. The channel number of the middle stem conv is narrower than the 'T' variant.
"""
model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32,
stem_type='deep_tiered_narrow', avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnext26tn_32x4d', pretrained, **model_args)
@register_model
def seresnext50_32x4d(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4,
block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnext50_32x4d', pretrained, **model_args)
@register_model
def seresnext101_32x4d(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4,
block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnext101_32x4d', pretrained, **model_args)
@register_model
def seresnext101_32x8d(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8,
block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnext101_32x8d', pretrained, **model_args)
@register_model
def senet154(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], cardinality=64, base_width=4, stem_type='deep',
down_kernel_size=3, block_reduce_first=2, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('senet154', pretrained, **model_args)
|