Spaces:
Running
Running
File size: 1,215 Bytes
c289504 bf1c321 c289504 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import PyPDF2
import spacy
from collections import Counter
import heapq
import io
# Load spaCy model
nlp = spacy.load("./en_core_web_sm-3.7.1")
def read_pdf(file_stream):
text = ''
reader = PyPDF2.PdfReader(file_stream)
for page in reader.pages:
text += page.extract_text() + ' '
return text.strip()
def extract_key_phrases(text):
doc = nlp(text)
# Combine noun chunks and named entities as candidates for key phrases
key_phrases = [chunk.text for chunk in doc.noun_chunks] + [ent.text for ent in doc.ents]
return key_phrases
def score_sentences(text, key_phrases):
sentence_scores = {}
doc = nlp(text)
for sent in doc.sents:
for phrase in key_phrases:
if phrase in sent.text:
if sent in sentence_scores:
sentence_scores[sent] += 1
else:
sentence_scores[sent] = 1
return sentence_scores
def summarize_text(sentence_scores, num_points=5):
summary_sentences = heapq.nlargest(num_points, sentence_scores, key=sentence_scores.get)
# Format summary as bullet points
summary = '\n'.join([f"- {sent.text}" for sent in summary_sentences])
return summary
|