Spaces:
Runtime error
Runtime error
import math | |
# Helper function to pretty-print message sizes | |
def convert_params(params): | |
if params == 0: | |
return "0" | |
size_name = ("", "K", "M", "B", "T", "P", "E", "Z", "Y") | |
i = int(math.floor(math.log(params, 1000))) | |
p = math.pow(1000, i) | |
s = round(params / p, 2) | |
return "%s %s" % (s, size_name[i]) | |
# Parameter Calculation function | |
def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio): | |
if tied_embeddings: | |
embedding_params = hidden_size * vocab_size | |
else: | |
embedding_params = 2 * hidden_size * vocab_size | |
position_embedding_params = hidden_size * sequence_length | |
attention_params = int(2 * (1 + kv_size_ratio) * num_layers * hidden_size * hidden_size) | |
layernorm_params = 13 * num_layers * hidden_size | |
if moe: | |
num_expert_layers = num_layers / expert_interval | |
ffn_expert_params = num_mlp_linears * ffn_expansion_factor * num_expert_layers * num_experts * hidden_size * hidden_size | |
ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size | |
ffn_params = ffn_expert_params + ffn_dense_params | |
gating_params = num_expert_layers * hidden_size * num_experts | |
else: | |
ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size | |
total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params | |
if moe: | |
total_params += gating_params | |
return f""" | |
Embedding parameters: {convert_params(embedding_params)} | |
Attention parameters: {convert_params(attention_params)} | |
FFN parameters: {convert_params(ffn_params)} | |
{'Gating parameters: ' + convert_params(gating_params) if moe else ''} | |
Total Params in the Model: {convert_params(total_params)} | |
""" | |