Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoConfig # Required for Hugging Face integration | |
from calc_params import calc_params # Import calc_params from the new file | |
# ---- Helper Functions ---- # | |
def convert_params(params): | |
if params == 0: | |
return "0" | |
size_name = ("", "K", "M", "B", "T", "P", "E", "Z", "Y") | |
i = int(math.floor(math.log(params, 1000))) | |
p = math.pow(1000, i) | |
s = round(params / p, 2) | |
return "%s %s" % (s, size_name[i]) | |
# Get Hugging Face model configuration and update the parameters | |
def get_hf_model_args(hf_model_name_or_path): | |
try: | |
config = AutoConfig.from_pretrained(hf_model_name_or_path, trust_remote_code=True).to_dict() | |
except Exception as e: | |
return None, f"Error fetching Hugging Face model: {str(e)}" | |
# Extract relevant values from the config | |
num_layers = config.get("num_hidden_layers", None) | |
hidden_size = config.get("hidden_size", None) | |
num_attention_heads = config.get("num_attention_heads", None) | |
vocab_size = config.get("vocab_size", None) | |
sequence_length = config.get("max_position_embeddings", None) | |
return { | |
"num_layers": num_layers, | |
"hidden_size": hidden_size, | |
"num_attention_heads": num_attention_heads, | |
"vocab_size": vocab_size, | |
"sequence_length": sequence_length, | |
}, None | |
# ---- Memory Calculation ---- # | |
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib): | |
model_params, hf_error = get_hf_model_args(hf_model_name_or_path) if hf_model_name_or_path else (None, None) | |
if hf_error: | |
return hf_error | |
if model_params: | |
num_layers = model_params["num_layers"] or num_layers | |
hidden_size = model_params["hidden_size"] or hidden_size | |
num_attention_heads = model_params["num_attention_heads"] or num_attention_heads | |
vocab_size = model_params["vocab_size"] or vocab_size | |
sequence_length = model_params["sequence_length"] or sequence_length | |
dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size) | |
embed_params = 2 * vocab_size * hidden_size | |
positional_params = hidden_size * sequence_length | |
ln_params = 8 * hidden_size * num_layers + (2 * hidden_size) | |
attention_params = int(2 * (1 + ffn_expansion_factor) * num_layers * hidden_size * hidden_size) | |
mlp_params = ffn_expansion_factor * num_layers * hidden_size * hidden_size | |
total_params = embed_params + positional_params + ln_params + attention_params + mlp_params | |
bytes_per_param = 2 if is_mixed_precision else 4 | |
model_mem = total_params * bytes_per_param | |
per_gpu_mem_gib = (model_mem / (tensor_parallel_size * pipeline_parallel_size)) / 1024**3 + misc_mem_gib | |
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB" | |
# ---- Update Gradio inputs with Hugging Face model config ---- # | |
def update_from_hf_model(hf_model_name_or_path): | |
model_params, hf_error = get_hf_model_args(hf_model_name_or_path) | |
if hf_error: | |
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), hf_error | |
return (gr.update(value=model_params["num_layers"]), | |
gr.update(value=model_params["hidden_size"]), | |
gr.update(value=model_params["num_attention_heads"]), | |
gr.update(value=model_params["vocab_size"]), | |
gr.update(value=model_params["sequence_length"]), | |
"") | |
# ---- Gradio Interface ---- # | |
with gr.Blocks() as demo: | |
with gr.Tabs(): | |
# Memory Calculation Tab | |
with gr.TabItem("Memory Calculation"): | |
hf_model_name_or_path = gr.Textbox(label="HuggingFace Model Name or Path (optional)", value="") | |
num_gpus = gr.Number(label="Number of GPUs", value=1) | |
tensor_parallel_size = gr.Number(label="Tensor Parallel Size", value=1) | |
pipeline_parallel_size = gr.Number(label="Pipeline Parallel Size", value=1) | |
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=8) | |
sequence_length = gr.Number(label="Sequence Length", value=2048) | |
vocab_size = gr.Number(label="Vocab Size", value=51200) | |
hidden_size = gr.Number(label="Hidden Size", value=6144) | |
num_attention_heads = gr.Number(label="Number of Attention Heads", value=64) | |
num_layers = gr.Number(label="Number of Layers", value=44) | |
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4) | |
is_mixed_precision = gr.Checkbox(label="Mixed Precision", value=True) | |
misc_mem_gib = gr.Number(label="Misc Memory Overhead (GiB)", value=5) | |
memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False) | |
calc_memory_button = gr.Button("Calculate Memory") | |
calc_memory_button.click(calc_mem, | |
inputs=[hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib], | |
outputs=memory_result) | |
hf_model_name_or_path.change(fn=update_from_hf_model, | |
inputs=[hf_model_name_or_path], | |
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length, memory_result]) | |
# Parameter Calculation Tab | |
with gr.TabItem("Parameter Calculation"): | |
vocab_size = gr.Number(label="Vocab Size", value=51200) | |
tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False) | |
hidden_size = gr.Number(label="Hidden Size", value=6144) | |
sequence_length = gr.Number(label="Sequence Length", value=2048) | |
num_layers = gr.Number(label="Number of Layers", value=44) | |
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4) | |
num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2) | |
kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0) | |
with gr.Accordion("MoE Parameters", open=False): | |
moe = gr.Checkbox(label="MoE", value=False) | |
num_experts = gr.Number(label="Number of Experts", value=8) | |
expert_interval = gr.Number(label="Expert Interval", value=1) | |
topk = gr.Number(label="Top k Routing", value=1) | |
param_result = gr.Textbox(label="Parameter Calculation Result", interactive=False) | |
calc_param_button = gr.Button("Calculate Parameters") | |
calc_param_button.click(calc_params, | |
inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio], | |
outputs=param_result) | |
demo.launch() | |