File size: 5,733 Bytes
ee3b2de
 
 
 
 
490262d
775e2c4
ee3b2de
 
6371eda
ee3b2de
 
 
 
 
 
6371eda
 
 
 
6fb313b
 
6371eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee3b2de
0b764ac
8841a51
0b764ac
 
ee3b2de
7f90752
0b764ac
ee3b2de
26049de
 
775e2c4
 
 
26049de
 
7f90752
26049de
0b764ac
 
ee3b2de
26049de
f5501f6
26049de
f5501f6
0b764ac
ee3b2de
 
6371eda
6fb313b
 
 
6ab5788
 
 
ee3b2de
 
 
 
 
 
f5501f6
 
 
 
 
26049de
 
0b764ac
ee3b2de
0b764ac
d850e97
 
19f5b6b
f5501f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import PIL
import requests
import torch
import gradio as gr
import random
from PIL import Image
import os
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler

#Loading from Diffusers Library
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", safety_checker=None)
pipe.to("cuda")
pipe.enable_attention_slicing()

counter = 0


help_text = """ Note: I will try to add the functionality to revert your changes to previous/original image in future versions of space. For now only forward editing is available.

Some notes from the official [instruct-pix2pix](https://huggingface.co/spaces/timbrooks/instruct-pix2pix) Space by the authors  
and from the official [Diffusers docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/pix2pix) -

If you're not getting what you want, there may be a few reasons:
1. Is the image not changing enough? Your guidance_scale may be too low. It should be >1. Higher guidance scale encourages to generate images 
that are closely linked to the text `prompt`, usually at the expense of lower image quality. This value dictates how similar the output should 
be to the input. This pipeline requires a value of at least `1`. It's possible your edit requires larger changes from the original image. 
                
2. Alternatively, you can toggle image_guidance_scale. Image guidance scale is to push the generated image towards the inital image. Image guidance 
                scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages to generate images that are closely 
                linked to the source image `image`, usually at the expense of lower image quality.  

3. I have observed that rephrasing the instruction sometimes improves results (e.g., "turn him into a dog" vs. "make him a dog" vs. "as a dog").

4. Increasing the number of steps sometimes improves results.

5. Do faces look weird? The Stable Diffusion autoencoder has a hard time with faces that are small in the image. Try:
    * Cropping the image so the face takes up a larger portion of the frame.
"""

def chat(image_in, in_steps, in_guidance_scale, in_img_guidance_scale, image_hid, img_name, counter_out, prompt, history, progress=gr.Progress(track_tqdm=True)):
    progress(0, desc="Starting...")
    #global counter 
    #counter += 1
    #if message == "revert": --to add revert functionality later
    print(f"counter:{counter_out}, prompt:{prompt}, img_name:{img_name}")
    if counter_out > 0:
      # Open the image
      image_in = Image.open(img_name) #("edited_image.png") #(img_nm)
      edited_image = pipe(prompt, image=image_in, num_inference_steps=int(in_steps), guidance_scale=float(in_guidance_scale), image_guidance_scale=float(in_img_guidance_scale)).images[0]
      if os.path.exists(img_name):
        os.remove(img_name)
      edited_image.save(img_name) #, overwrite=True)
    else:
      seed = random.randint(0, 1000000)
      img_name = f"./edited_image_{seed}.png"
      edited_image = pipe(prompt, image=image_in, num_inference_steps=int(in_steps), guidance_scale=float(in_guidance_scale), image_guidance_scale=float(in_img_guidance_scale)).images[0]
      edited_image.save(img_name) #, overwrite=True) #("/tmp/edited_image.png") #(img_nm)
      counter_out += 1
    history = history or []
    #Resizing (or not) the image for better display and adding supportive sample text
    add_text_list = ["There you go", "Enjoy your image!", "Nice work! Wonder what you gonna do next!", "Way to go!", "Does this work for you?", "Something like this?"]
    response = random.choice(add_text_list) + '<img src="/file=' + img_name + '">' # style="width: 200px; height: 200px;">'
    history.append((prompt, response))
    return history, history, edited_image, img_name, counter_out

with gr.Blocks() as demo:
    gr.Markdown("""<h1><center> Chat Interface with InstructPix2Pix: Give Image Editing Instructions </h1></center>
    <p>*Apologies for inconvenience, this Space is still very much a work in progress... *
    
    For faster inference without waiting in the queue, you may duplicate the space and upgrade to GPU in settings.<br/>
    <a href="https://huggingface.co/spaces/ysharma/InstructPix2Pix_Chatbot?duplicate=true">
    <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
    <p/>""")
    with gr.Row():
      with gr.Column():
        image_in = gr.Image(type='pil', label="Original Image")
        text_in = gr.Textbox()
        state_in = gr.State()
        b1 = gr.Button('Edit the image!')
        with gr.Accordion("Advance settings for Training and Inference", open=False):
          gr.Markdown("Advance settings for - Number of Inference steps, Guidanace scale, and Image guidance scale.")
          in_steps = gr.Number(label="Enter the number of Inference steps", value = 20)
          in_guidance_scale = gr.Slider(1,10, step=0.5, label="Set Guidance scale", value=7.5)
          in_img_guidance_scale = gr.Slider(1,10, step=0.5, label="Set Image Guidance scale", value=1.5)
          image_hid = gr.Image(visible=False,)
          img_name_temp_out = gr.Textbox(visible=False)
          counter_out = gr.Number(visible=False, value=0)
      chatbot = gr.Chatbot() 
    b1.click(chat,[image_in, in_steps, in_guidance_scale, in_img_guidance_scale, image_hid, img_name_temp_out,counter_out,  text_in, state_in], [chatbot, state_in, image_hid, img_name_temp_out, counter_out]) #, queue=True)
    gr.Markdown(help_text)
    
demo.queue(concurrency_count=10) 
demo.launch(debug=True, width="80%", height=2000)