File size: 9,248 Bytes
d573b56 d05a9e7 d573b56 06c933c d573b56 06c933c d573b56 06c933c d573b56 06c933c d573b56 06c933c d573b56 06c933c d573b56 06c933c d573b56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import hydra
from hydra.core.global_hydra import GlobalHydra
from omegaconf import DictConfig, OmegaConf
import streamlit as st
from PIL import Image
import os
import sys
sys.path.append(os.path.dirname(__file__))
from download_models import download_model
@st.cache_resource
def load_simple_rag(config, used_lmdeploy=False):
## load config
data_source_dir = config["data_source_dir"]
db_persist_directory = config["db_persist_directory"]
llm_model = config["llm_model"]
embeddings_model = config["embeddings_model"]
reranker_model = config["reranker_model"]
llm_system_prompt = config["llm_system_prompt"]
rag_prompt_template = config["rag_prompt_template"]
from rag.simple_rag import WuleRAG
if not used_lmdeploy:
from rag.simple_rag import InternLM, WuleRAG
base_mode = InternLM(model_path=llm_model, llm_system_prompt=llm_system_prompt)
else:
from deploy.lmdeploy_model import LmdeployLM, GenerationConfig
cache_max_entry_count = config.get("cache_max_entry_count", 0.2)
base_mode = LmdeployLM(model_path=llm_model, llm_system_prompt=llm_system_prompt, cache_max_entry_count=cache_max_entry_count)
## loda final rag model
wulewule_rag = WuleRAG(data_source_dir, db_persist_directory, base_mode, embeddings_model, reranker_model, rag_prompt_template)
return wulewule_rag
@st.cache_resource
def load_wulewule_agent(config):
from agent.wulewule_agent import MultiModalAssistant, Settings
use_remote = config["use_remote"]
SiliconFlow_api = config["SiliconFlow_api"]
data_source_dir = config["data_source_dir"]
if len(SiliconFlow_api)<51 and os.environ.get('SiliconFlow_api', ""):
SiliconFlow_api = os.environ.get('SiliconFlow_api')
print(f"======= loading llm =======")
if use_remote:
from llama_index.llms.siliconflow import SiliconFlow
from llama_index.embeddings.siliconflow import SiliconFlowEmbedding
api_base_url = "https://api.siliconflow.cn/v1/chat/completions"
# model = "Qwen/Qwen2.5-72B-Instruct"
# model = "deepseek-ai/DeepSeek-V2.5"
remote_llm = config["remote_llm"]
remote_embeddings_model = config["remote_embeddings_model"]
llm = SiliconFlow( model=remote_llm, base_url=api_base_url, api_key=SiliconFlow_api, max_tokens=4096)
embed_model = SiliconFlowEmbedding( model=remote_embeddings_model, api_key=SiliconFlow_api)
else:
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM
local_llm = config["llm_model"]
local_embeddings_model = config["agent_embeddings_model"]
llm = HuggingFaceLLM(
model_name=local_llm,
tokenizer_name=local_llm,
model_kwargs={"trust_remote_code":True},
tokenizer_kwargs={"trust_remote_code":True},
# context_window=4096,
# max_new_tokens=4096,
)
embed_model = HuggingFaceEmbedding(
model_name=local_embeddings_model
)
# settings
Settings.llm = llm
Settings.embed_model = embed_model
wulewule_assistant = MultiModalAssistant(data_source_dir, llm, SiliconFlow_api)
print(f"======= finished loading ! =======")
return wulewule_assistant
GlobalHydra.instance().clear()
@hydra.main(version_base=None, config_path="./configs", config_name="model_cfg")
def main(cfg):
# omegaconf.dictcfg.DictConfig 转换为普通字典
config_dict = OmegaConf.to_container(cfg, resolve=True)
## download model from modelscope
if not config_dict["use_remote"] and not os.path.exists(config_dict["llm_model"]):
download_model(llm_model_path =config_dict["llm_model"])
## agent mode, used llama-index, rturn off lmdeloy and chroma rag
if cfg.agent_mode:
## load wulewule agent
wulewule_assistant = load_wulewule_agent(config_dict)
cfg.use_rag = False
cfg.use_lmdepoly = False
if cfg.use_rag:
## load rag model
wulewule_model = load_simple_rag(config_dict, used_lmdeploy=cfg.use_lmdepoly)
elif ( cfg.use_lmdepoly):
## load lmdeploy model
from deploy.lmdeploy_model import load_turbomind_model, GenerationConfig
wulewule_model = load_turbomind_model(config_dict["llm_model"], config_dict["llm_system_prompt"], config_dict["cache_max_entry_count"])
## streamlit setting
if "messages" not in st.session_state:
st.session_state["messages"] = []
# 在侧边栏中创建一个标题和一个链接
with st.sidebar:
st.markdown("## 悟了悟了💡")
logo_path = "assets/sd_wulewule.webp"
if os.path.exists(logo_path):
image = Image.open(logo_path)
st.image(image, caption='wulewule')
"[InternLM](https://github.com/InternLM)"
"[悟了悟了](https://github.com/xzyun2011/wulewule.git)"
# 创建一个标题
st.title("悟了悟了:黑神话悟空AI助手🐒")
# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:
st.chat_message("user").write(msg["user"])
assistant_res = msg["assistant"]
if isinstance(assistant_res, str):
st.chat_message("assistant").write(assistant_res)
elif cfg.agent_mode and isinstance(assistant_res, dict):
image_url = assistant_res["image_url"]
audio_text = assistant_res["audio_text"]
st.chat_message("assistant").write(assistant_res["response"])
if image_url:
# 使用st.image展示URL图像,并设置使用列宽
st.image( image_url, width=256 )
if audio_text:
# 使用st.audio函数播放音频
st.audio("audio.mp3")
st.write(f"语音内容为: \n\n{audio_text}")
# Get user input
if prompt := st.chat_input("请输入你的问题,换行使用Shfit+Enter。"):
# Display user input
st.chat_message("user").write(prompt)
## 初始化完整的回答字符串
full_answer = ""
if cfg.agent_mode:
with st.chat_message('robot'):
message_placeholder = st.empty()
response_dict = wulewule_assistant.chat(prompt)
image_url = response_dict["image_url"]
audio_text = response_dict["audio_text"]
for cur_response in response_dict["response"]:
full_answer += cur_response
# Display robot response in chat message container
message_placeholder.markdown(full_answer + '▌')
message_placeholder.markdown(full_answer)
# 将问答结果添加到 session_state 的消息历史中
st.session_state.messages.append({"user": prompt, "assistant": response_dict})
if image_url:
# 使用st.image展示URL图像,并设置使用列宽
st.image( image_url, width=256 )
if audio_text:
# 使用st.audio函数播放音频
st.audio("audio.mp3")
st.write(f"语音内容为: \n\n{audio_text}")
# 流式显示, used streaming result
else:
if cfg.stream_response:
# rag
with st.chat_message('robot'):
message_placeholder = st.empty()
if cfg.use_rag:
for cur_response in wulewule_model.query_stream(prompt):
full_answer += cur_response
# Display robot response in chat message container
message_placeholder.markdown(full_answer + '▌')
elif cfg.use_lmdepoly:
# gen_config = GenerationConfig(top_p=0.8,
# top_k=40,
# temperature=0.8,
# max_new_tokens=2048,
# repetition_penalty=1.05)
messages = [{'role': 'user', 'content': f'{prompt}'}]
for response in wulewule_model.stream_infer(messages):
full_answer += response.text
# Display robot response in chat message container
message_placeholder.markdown(full_answer + '▌')
message_placeholder.markdown(full_answer)
# 一次性显示结果
else:
if cfg.use_lmdepoly:
messages = [{'role': 'user', 'content': f'{prompt}'}]
full_answer = wulewule_model(messages).text
elif cfg.use_rag:
full_answer = wulewule_model.query(prompt)
# 显示回答
st.chat_message("assistant").write(full_answer)
# 将问答结果添加到 session_state 的消息历史中
st.session_state.messages.append({"user": prompt, "assistant": full_answer})
if __name__ == "__main__":
main() |