Spaces:
Sleeping
Sleeping
Sivabalan Thirunavukkarasu
commited on
W4D1 Midterm - Building and Deploying a Custom RAG Application
Browse files- .gitignore +7 -0
- Dockerfile +10 -0
- app.py +150 -0
- chainlit.md +1 -0
- data/airbnb_financials.pdf +0 -0
- requirements.txt +10 -0
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
__pycache__/
|
3 |
+
.chainlit
|
4 |
+
*.faiss
|
5 |
+
*.pkl
|
6 |
+
.files
|
7 |
+
airbnb-auditor/.git*
|
Dockerfile
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11
|
2 |
+
RUN useradd -m -u 1000 user
|
3 |
+
ENV HOME=/home/user \
|
4 |
+
PATH=/home/user/.local/bin:$PATH
|
5 |
+
WORKDIR $HOME/app
|
6 |
+
COPY . .
|
7 |
+
RUN chown -R user:user .
|
8 |
+
RUN pip install -r requirements.txt
|
9 |
+
USER user
|
10 |
+
CMD ["chainlit", "run", "app.py", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import chainlit as cl
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from operator import itemgetter
|
5 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
6 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
7 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_community.vectorstores import Qdrant
|
9 |
+
from langchain_openai.embeddings import OpenAIEmbeddings
|
10 |
+
from langchain_core.prompts import PromptTemplate
|
11 |
+
from langchain.schema.runnable.config import RunnableConfig
|
12 |
+
|
13 |
+
# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
|
14 |
+
# ---- ENV VARIABLES ---- #
|
15 |
+
"""
|
16 |
+
This function will load our environment file (.env) if it is present.
|
17 |
+
|
18 |
+
NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
|
19 |
+
"""
|
20 |
+
load_dotenv()
|
21 |
+
|
22 |
+
"""
|
23 |
+
We will load our environment variables here.
|
24 |
+
"""
|
25 |
+
HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
|
26 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
27 |
+
|
28 |
+
# ---- GLOBAL DECLARATIONS ---- #
|
29 |
+
|
30 |
+
# -- RETRIEVAL -- #
|
31 |
+
"""
|
32 |
+
1. Load Documents from PDF File
|
33 |
+
2. Split Documents into Chunks
|
34 |
+
3. Load HuggingFace Embeddings (remember to use the URL we set above)
|
35 |
+
4. Index Files if they do not exist, otherwise load the vectorstore
|
36 |
+
"""
|
37 |
+
document_loader = PyMuPDFLoader("./data/airbnb_financials.pdf")
|
38 |
+
documents = document_loader.load()
|
39 |
+
|
40 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
|
41 |
+
split_documents = text_splitter.split_documents(documents)
|
42 |
+
|
43 |
+
openai_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
44 |
+
|
45 |
+
if os.path.exists("./data/vectorstore"):
|
46 |
+
vectorstore = Qdrant.from_existing_collection(
|
47 |
+
embeddings=openai_embeddings,
|
48 |
+
collection_name="airbnb_financials",
|
49 |
+
path="./data/vectorstore",
|
50 |
+
batch_size=32,
|
51 |
+
)
|
52 |
+
print("Loaded Vectorstore")
|
53 |
+
else:
|
54 |
+
print("Indexing Files")
|
55 |
+
os.makedirs("./data/vectorstore", exist_ok=True)
|
56 |
+
vectorstore = Qdrant.from_documents(
|
57 |
+
documents=split_documents,
|
58 |
+
embedding=openai_embeddings,
|
59 |
+
path="./data/vectorstore",
|
60 |
+
collection_name="airbnb_financials",
|
61 |
+
batch_size=32,
|
62 |
+
)
|
63 |
+
|
64 |
+
retriever = vectorstore.as_retriever()
|
65 |
+
|
66 |
+
# -- AUGMENTED -- #
|
67 |
+
"""
|
68 |
+
1. Define a String Template
|
69 |
+
2. Create a Prompt Template from the String Template
|
70 |
+
"""
|
71 |
+
RAG_PROMPT_TEMPLATE = """\
|
72 |
+
<|start_header_id|>system<|end_header_id|>
|
73 |
+
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know. Do not provide relevant context in response unless explicitly asked.<|eot_id|>
|
74 |
+
|
75 |
+
<|start_header_id|>user<|end_header_id|>
|
76 |
+
User Query:
|
77 |
+
{query}
|
78 |
+
|
79 |
+
Context:
|
80 |
+
{context}<|eot_id|>
|
81 |
+
|
82 |
+
<|start_header_id|>assistant<|end_header_id|>
|
83 |
+
"""
|
84 |
+
|
85 |
+
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
86 |
+
|
87 |
+
# -- GENERATION -- #
|
88 |
+
"""
|
89 |
+
1. Create a HuggingFaceEndpoint for the LLM
|
90 |
+
"""
|
91 |
+
hf_llm = HuggingFaceEndpoint(
|
92 |
+
endpoint_url=HF_LLM_ENDPOINT,
|
93 |
+
max_new_tokens=512,
|
94 |
+
top_k=10,
|
95 |
+
top_p=0.95,
|
96 |
+
temperature=0.3,
|
97 |
+
repetition_penalty=1.15,
|
98 |
+
huggingfacehub_api_token=HF_TOKEN,
|
99 |
+
)
|
100 |
+
|
101 |
+
@cl.author_rename
|
102 |
+
def rename(original_author: str):
|
103 |
+
"""
|
104 |
+
This function can be used to rename the 'author' of a message.
|
105 |
+
|
106 |
+
In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
|
107 |
+
"""
|
108 |
+
rename_dict = {
|
109 |
+
"Assistant" : "AirBnB Auditor"
|
110 |
+
}
|
111 |
+
return rename_dict.get(original_author, original_author)
|
112 |
+
|
113 |
+
@cl.on_chat_start
|
114 |
+
async def start_chat():
|
115 |
+
"""
|
116 |
+
This function will be called at the start of every user session.
|
117 |
+
|
118 |
+
We will build our LCEL RAG chain here, and store it in the user session.
|
119 |
+
|
120 |
+
The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
|
121 |
+
"""
|
122 |
+
|
123 |
+
lcel_rag_chain = (
|
124 |
+
{"context": itemgetter("query") | retriever, "query": itemgetter("query")}
|
125 |
+
| rag_prompt | hf_llm
|
126 |
+
)
|
127 |
+
|
128 |
+
cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
|
129 |
+
|
130 |
+
@cl.on_message
|
131 |
+
async def main(message: cl.Message):
|
132 |
+
"""
|
133 |
+
This function will be called every time a message is recieved from a session.
|
134 |
+
|
135 |
+
We will use the LCEL RAG chain to generate a response to the user query.
|
136 |
+
|
137 |
+
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
|
138 |
+
"""
|
139 |
+
lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
|
140 |
+
|
141 |
+
msg = cl.Message(content="")
|
142 |
+
|
143 |
+
for chunk in await cl.make_async(lcel_rag_chain.stream)(
|
144 |
+
{"query": message.content},
|
145 |
+
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
146 |
+
):
|
147 |
+
if chunk != "<|eot_id|>":
|
148 |
+
await msg.stream_token(chunk)
|
149 |
+
|
150 |
+
await msg.send()
|
chainlit.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# AirBnB Auditor
|
data/airbnb_financials.pdf
ADDED
Binary file (596 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
chainlit==0.7.700
|
2 |
+
langchain==0.2.5
|
3 |
+
langchain_community==0.2.5
|
4 |
+
langchain_core==0.2.9
|
5 |
+
langchain_huggingface==0.0.3
|
6 |
+
langchain_text_splitters==0.2.1
|
7 |
+
langchain_openai==0.1.9
|
8 |
+
python-dotenv==1.0.1
|
9 |
+
pymupdf==1.24.5
|
10 |
+
qdrant-client==1.9.2
|