watermark-anything / gradio_app.py
xiaoyao9184
Support gradio
2718c61
raw
history blame
16.1 kB
import gradio as gr
import re
import string
import random
import os
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision import transforms
from watermark_anything.data.metrics import msg_predict_inference
from notebooks.inference_utils import (
load_model_from_checkpoint,
default_transform,
unnormalize_img,
create_random_mask,
plot_outputs,
msg2str,
torch_to_np,
multiwm_dbscan
)
# Device configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Constants
proportion_masked = 0.5 # Proportion of image to be watermarked
epsilon = 1 # min distance between decoded messages in a cluster
min_samples = 500 # min number of pixels in a 256x256 image to form a cluster
# Color map for visualization
color_map = {
-1: [0, 0, 0], # Black for -1
0: [255, 0, 255], # ? for 0
1: [255, 0, 0], # Red for 1
2: [0, 255, 0], # Green for 2
3: [0, 0, 255], # Blue for 3
4: [255, 255, 0], # Yellow for 4
}
def load_wam():
# Load the model from the specified checkpoint
exp_dir = "checkpoints"
json_path = os.path.join(exp_dir, "params.json")
ckpt_path = os.path.join(exp_dir, 'checkpoint.pth')
wam = load_model_from_checkpoint(json_path, ckpt_path).to(device).eval()
return wam
def image_detect(img_pil: Image.Image) -> (torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor):
img_pt = default_transform(img_pil).unsqueeze(0).to(device) # [1, 3, H, W]
# Detect the watermark in the multi-watermarked image
preds = wam.detect(img_pt)["preds"] # [1, 33, 256, 256]
mask_preds = F.sigmoid(preds[:, 0, :, :]) # [1, 256, 256], predicted mask
mask_preds_res = F.interpolate(mask_preds.unsqueeze(1), size=(img_pt.shape[-2], img_pt.shape[-1]), mode="bilinear", align_corners=False) # [1, 1, H, W]
bit_preds = preds[:, 1:, :, :] # [1, 32, 256, 256], predicted bits
# positions has the cluster number at each pixel. can be upsaled back to the original size.
try:
centroids, positions = multiwm_dbscan(bit_preds, mask_preds, epsilon=epsilon, min_samples=min_samples)
centroids_pt = torch.stack(list(centroids.values()))
except (UnboundLocalError) as e:
print(f"Error while detecting watermark: {e}")
positions = None
centroids = None
centroids_pt = None
return img_pt, (mask_preds_res>0.5).float(), positions, centroids, centroids_pt
def image_embed(img_pil: Image.Image, wm_msgs: torch.Tensor, wm_masks: torch.Tensor) -> (torch.Tensor, torch.Tensor, torch.Tensor):
img_pt = default_transform(img_pil).unsqueeze(0).to(device) # [1, 3, H, W]
# Embed the watermark message into the image
# Mask to use. 1 values correspond to pixels where the watermark will be placed.
multi_wm_img = img_pt.clone()
for ii in range(len(wm_msgs)):
wm_msg, mask = wm_msgs[ii].unsqueeze(0), wm_masks[ii]
outputs = wam.embed(img_pt, wm_msg)
multi_wm_img = outputs['imgs_w'] * mask + multi_wm_img * (1 - mask)
torch.cuda.empty_cache()
return img_pt, multi_wm_img, wm_masks.sum(0)
def create_bounding_mask(img_size, boxes):
"""Create a binary mask from bounding boxes.
Args:
img_size (tuple): Image size (height, width)
boxes (list): List of tuples (x1, y1, x2, y2) defining bounding boxes
Returns:
torch.Tensor: Binary mask tensor
"""
mask = torch.zeros(img_size)
for x1, y1, x2, y2 in boxes:
mask[y1:y2, x1:x2] = 1
return mask
def centroid_to_hex(centroid):
binary_int = 0
for bit in centroid:
binary_int = (binary_int << 1) | int(bit.item())
return format(binary_int, '08x')
# Load the model
wam = load_wam()
def detect_watermark(image):
if image is None:
return None, None, None, {"status": "error", "messages": [], "error": "No image provided"}
img_pil = Image.fromarray(image).convert("RGB")
det_img, pred, positions, centroids, centroids_pt = image_detect(img_pil)
# Convert tensor images to numpy for display
detected_img = torch_to_np(det_img.detach())
pred_mask = torch_to_np(pred.detach().repeat(1, 3, 1, 1))
# Create cluster visualization
if positions is not None:
resize_ori = transforms.Resize(det_img.shape[-2:])
rgb_image = torch.zeros((3, positions.shape[-1], positions.shape[-2]), dtype=torch.uint8)
for value, color in color_map.items():
mask_ = positions == value
for channel, color_value in enumerate(color):
rgb_image[channel][mask_.squeeze()] = color_value
rgb_image = resize_ori(rgb_image.float()/255)
cluster_viz = rgb_image.permute(1, 2, 0).numpy()
# Create message output as JSON
messages = []
for key in centroids.keys():
centroid_hex = centroid_to_hex(centroids[key])
centroid_hex_array = "-".join([centroid_hex[i:i+4] for i in range(0, len(centroid_hex), 4)])
messages.append({
"id": int(key),
"message": centroid_hex_array,
"color": color_map[key]
})
message_json = {
"status": "success",
"messages": messages,
"count": len(messages)
}
else:
cluster_viz = np.zeros_like(detected_img)
message_json = {
"status": "no_detection",
"messages": [],
"count": 0
}
return pred_mask, cluster_viz, message_json
def embed_watermark(image, wm_num, wm_type, wm_str, wm_loc):
if image is None:
return None, None, {
"status": "failure",
"messages": "No image provided"
}
if wm_type == "input":
if not re.match(r"^([0-9A-F]{4}-[0-9A-F]{4}-){%d}[0-9A-F]{4}-[0-9A-F]{4}$" % (wm_num-1), wm_str):
tip = "-".join([f"FFFF-{_}{_}{_}{_}" for _ in range(wm_num)])
return None, None, {
"status": "failure",
"messages": f"Invalid type input. Please use {tip}"
}
if wm_loc == "bounding":
if ROI_coordinates['clicks'] != wm_num * 2:
return None, None, {
"status": "failure",
"messages": "Invalid location input. Please draw at least %d bounding ROI" % (wm_num)
}
img_pil = Image.fromarray(image).convert("RGB")
# Generate watermark messages based on type
wm_msgs = []
if wm_type == "random":
chars = '-'.join(''.join(random.choice(string.hexdigits) for _ in range(4)) for _ in range(wm_num * 2))
wm_str = chars.lower()
wm_hex = wm_str.replace("-", "")
for i in range(0, len(wm_hex), 8):
chunk = wm_hex[i:i+8]
binary = bin(int(chunk, 16))[2:].zfill(32)
wm_msgs.append([int(b) for b in binary])
# Define a 32-bit message to be embedded into the images
wm_msgs = torch.tensor(wm_msgs, dtype=torch.float32).to(device)
# Create mask based on location type
wm_masks = None
if wm_loc == "random":
img_pt = default_transform(img_pil).unsqueeze(0).to(device)
# To ensure at least `proportion_masked %` of the width is randomly usable,
# otherwise, it is easy to enter an infinite loop and fail to find a usable width.
mask_percentage = img_pil.height / img_pil.width * proportion_masked / wm_num
wm_masks = create_random_mask(img_pt, num_masks=wm_num, mask_percentage=mask_percentage)
elif wm_loc == "bounding" and sections:
wm_masks = torch.zeros((len(sections), 1, img_pil.height, img_pil.width), dtype=torch.float32).to(device)
for idx, ((x_start, y_start, x_end, y_end), _) in enumerate(sections):
left = min(x_start, x_end)
right = max(x_start, x_end)
top = min(y_start, y_end)
bottom = max(y_start, y_end)
wm_masks[idx, 0, top:bottom, left:right] = 1
img_pt, embed_img_pt, embed_mask_pt = image_embed(img_pil, wm_msgs, wm_masks)
# Convert to numpy for display
img_np = torch_to_np(embed_img_pt.detach())
mask_np = torch_to_np(embed_mask_pt.detach().expand(3, -1, -1))
message_json = {
"status": "success",
"messages": wm_str
}
return img_np, mask_np, message_json
# ROI means Region Of Interest. It is the region where the user clicks
# to specify the location of the watermark.
ROI_coordinates = {
'x_temp': 0,
'y_temp': 0,
'x_new': 0,
'y_new': 0,
'clicks': 0,
}
sections = []
def get_select_coordinates(img, evt: gr.SelectData, num):
if ROI_coordinates['clicks'] >= num * 2:
gr.Warning(f"Cant add more than {num} of Watermarks.")
return (img, sections)
# update new coordinates
ROI_coordinates['clicks'] += 1
ROI_coordinates['x_temp'] = ROI_coordinates['x_new']
ROI_coordinates['y_temp'] = ROI_coordinates['y_new']
ROI_coordinates['x_new'] = evt.index[0]
ROI_coordinates['y_new'] = evt.index[1]
# compare start end coordinates
x_start = ROI_coordinates['x_new'] if (ROI_coordinates['x_new'] < ROI_coordinates['x_temp']) else ROI_coordinates['x_temp']
y_start = ROI_coordinates['y_new'] if (ROI_coordinates['y_new'] < ROI_coordinates['y_temp']) else ROI_coordinates['y_temp']
x_end = ROI_coordinates['x_new'] if (ROI_coordinates['x_new'] > ROI_coordinates['x_temp']) else ROI_coordinates['x_temp']
y_end = ROI_coordinates['y_new'] if (ROI_coordinates['y_new'] > ROI_coordinates['y_temp']) else ROI_coordinates['y_temp']
if ROI_coordinates['clicks'] % 2 == 0:
sections[len(sections) - 1] = ((x_start, y_start, x_end, y_end), f"Mask {len(sections)}")
# both start and end point get
return (img, sections)
else:
point_width = int(img.shape[0]*0.05)
sections.append(((ROI_coordinates['x_new'], ROI_coordinates['y_new'],
ROI_coordinates['x_new'] + point_width, ROI_coordinates['y_new'] + point_width),
f"Click second point for Mask {len(sections) + 1}"))
return (img, sections)
def del_select_coordinates(img, evt: gr.SelectData):
del sections[evt.index]
# recreate section names
for i in range(len(sections)):
sections[i] = (sections[i][0], f"Mask {i + 1}")
# last section clicking second point not complete
if ROI_coordinates['clicks'] % 2 != 0:
if len(sections) == evt.index:
# delete last section
ROI_coordinates['clicks'] -= 1
else:
# recreate last section name for second point
ROI_coordinates['clicks'] -= 2
sections[len(sections) - 1] = (sections[len(sections) - 1][0], f"Click second point for Mask {len(sections) + 1}")
else:
ROI_coordinates['clicks'] -= 2
return (img[0], sections)
with gr.Blocks(title="Watermark Anything Demo") as demo:
gr.Markdown("""
# Watermark Anything Demo
This app demonstrates watermark detection and embedding using the Watermark Anything model.
Find the project [here](https://github.com/facebookresearch/watermark-anything).
""")
with gr.Tabs():
with gr.TabItem("Embed Watermark"):
with gr.Row():
with gr.Column():
embedding_img = gr.Image(label="Input Image", type="numpy")
with gr.Column():
embedding_num = gr.Slider(1, 5, value=1, step=1, label="Number of Watermarks")
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
embedding_str = gr.Textbox(label="Watermark Text", visible=False, show_copy_button=True)
embedding_loc = gr.Radio(["random", "bounding"], value="random", label="Location", info="Location of watermarks")
@gr.render(inputs=embedding_loc)
def show_split(wm_loc):
if wm_loc == "bounding":
embedding_box = gr.AnnotatedImage(
label="ROI",
color_map={
"ROI of Watermark embedding": "#9987FF",
"Click second point for ROI": "#f44336"}
)
embedding_img.select(
fn=get_select_coordinates,
inputs=[embedding_img, embedding_num],
outputs=embedding_box)
embedding_box.select(
fn=del_select_coordinates,
inputs=embedding_box,
outputs=embedding_box
)
else:
embedding_img.select()
embedding_btn = gr.Button("Embed Watermark")
marked_msg = gr.JSON(label="Marked Messages")
with gr.Row():
marked_image = gr.Image(label="Watermarked Image")
marked_mask = gr.Image(label="Position of the watermark")
def visible_text_label(embedding_type, embedding_num):
if embedding_type == "input":
tip = "-".join([f"FFFF-{_}{_}{_}{_}" for _ in range(embedding_num)])
return gr.update(visible=True, label=f"Watermark Text (Format: {tip})")
else:
return gr.update(visible=False)
def check_embedding_str(embedding_str, embedding_num):
if not re.match(r"^([0-9A-F]{4}-[0-9A-F]{4}-){%d}[0-9A-F]{4}-[0-9A-F]{4}$" % (embedding_num-1), embedding_str):
tip = "-".join([f"FFFF-{_}{_}{_}{_}" for _ in range(embedding_num)])
gr.Warning(f"Invalid format. Please use {tip}", duration=0)
return gr.update(interactive=False)
else:
return gr.update(interactive=True)
embedding_num.change(
fn=visible_text_label,
inputs=[embedding_type, embedding_num],
outputs=[embedding_str]
)
embedding_type.change(
fn=visible_text_label,
inputs=[embedding_type, embedding_num],
outputs=[embedding_str]
)
embedding_str.change(
fn=check_embedding_str,
inputs=[embedding_str, embedding_num],
outputs=[embedding_btn]
)
embedding_btn.click(
fn=embed_watermark,
inputs=[embedding_img, embedding_num, embedding_type, embedding_str, embedding_loc],
outputs=[marked_image, marked_mask, marked_msg]
)
with gr.TabItem("Detect Watermark"):
with gr.Row():
with gr.Column():
detecting_img = gr.Image(label="Input Image", type="numpy")
with gr.Column():
detecting_btn = gr.Button("Detect Watermark")
predicted_messages = gr.JSON(label="Detected Messages")
with gr.Row():
predicted_mask = gr.Image(label="Predicted Watermark Position")
predicted_cluster = gr.Image(label="Watermark Clusters")
detecting_btn.click(
fn=detect_watermark,
inputs=[detecting_img],
outputs=[predicted_mask, predicted_cluster, predicted_messages]
)
demo.launch()