File size: 20,942 Bytes
d849382
 
 
 
ae44dbf
 
 
371e8f6
ae44dbf
 
d849382
371e8f6
 
 
 
 
 
4d66995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d849382
4d66995
 
 
 
ae44dbf
 
 
4d66995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d849382
4d66995
d849382
 
4d66995
 
d849382
4d66995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d849382
 
4d66995
d849382
 
4d66995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d849382
4d66995
 
 
 
 
 
 
 
 
 
d849382
4d66995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d849382
 
4d66995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import os
import sys
if "APP_PATH" in os.environ:
    # fix sys.path for import
    os.chdir(os.environ["APP_PATH"])
    if os.getcwd() not in sys.path:
        sys.path.append(os.getcwd())

# remove duplicate gradio_app path from sys.path
sys.path = list(dict.fromkeys(sys.path))

# remove gradio reload env if in huggingface space
if "SPACE_ID" in os.environ:
    for key in ["GRADIO_WATCH_DIRS", "GRADIO_WATCH_MODULE_NAME", "GRADIO_WATCH_DEMO_NAME", "GRADIO_WATCH_DEMO_PATH"]:
        if key in os.environ:
            del os.environ[key]

# here the subprocess stops loading, because __name__ is NOT '__main__'
# gradio will reload
if '__main__' == __name__:

    import gradio as gr

    import os
    import re
    import string
    import random
    import torch
    import torch.nn.functional as F
    from torchvision import transforms
    from PIL import Image

    from watermark_anything.data.metrics import msg_predict_inference
    from notebooks.inference_utils import (
        load_model_from_checkpoint,
        default_transform,
        create_random_mask,
        torch_to_np
    )

    import time
    from multiwm import dbscan

    max_timeout = int(os.environ.get("MAX_TIMEOUT", 60))

    # Device configuration
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Seed
    seed = 42
    torch.manual_seed(seed)

    # Constants
    proportion_masked = 0.5  # Proportion of image to be watermarked
    epsilon = 1  # min distance between decoded messages in a cluster
    min_samples = 500  # min number of pixels in a 256x256 image to form a cluster

    # Color map for visualization
    color_map = {
        -1: [0, 0, 0],      # Black for -1
        0: [255, 0, 255],   # ? for 0
        1: [255, 0, 0],     # Red for 1
        2: [0, 255, 0],     # Green for 2
        3: [0, 0, 255],     # Blue for 3
        4: [255, 255, 0],   # Yellow for 4
        5: [0, 255, 255],   # ?
    }

    def load_wam():
        # Load the model from the specified checkpoint
        exp_dir = "checkpoints"
        json_path = os.path.join(exp_dir, "params.json")
        ckpt_path = os.environ.get("CHECKPOINT_MODEL_PATH", exp_dir)
        ckpt_file = os.path.join(ckpt_path, 'checkpoint.pth')
        wam = load_model_from_checkpoint(json_path, ckpt_file).to(device).eval()
        return wam

    def image_detect(img_pil: Image.Image, scan_mult: bool=False, timeout_seconds: int=5) -> (torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor):
        img_pt = default_transform(img_pil).unsqueeze(0).to(device)  # [1, 3, H, W]

        # Detect the watermark in the multi-watermarked image
        preds = wam.detect(img_pt)["preds"]  # [1, 33, 256, 256]
        mask_preds = F.sigmoid(preds[:, 0, :, :])  # [1, 256, 256], predicted mask
        bit_preds = preds[:, 1:, :, :]  # [1, 32, 256, 256], predicted bits

        mask_preds_res = F.interpolate(mask_preds.unsqueeze(1), size=(img_pt.shape[-2], img_pt.shape[-1]), mode="bilinear", align_corners=False)  # [1, 1, H, W]
        message_pred_inf = msg_predict_inference(bit_preds, mask_preds).cpu().float()  # [1, 32]
        if message_pred_inf.sum() == 0:
            message_pred_inf = None

        centroids, positions = None, None
        if(scan_mult):
            try:
                centroids, positions = dbscan(bit_preds, mask_preds, epsilon, min_samples, dec_timeout=timeout_seconds)
            except TimeoutError:
                print("Timeout error in multiwm task!")
            except (UnboundLocalError) as e:
                print(f"Error while detecting watermark: {e}")

        return img_pt, (mask_preds_res>0.5).float(), message_pred_inf, positions, centroids

    def image_embed(img_pil: Image.Image, wm_msgs: torch.Tensor, wm_masks: torch.Tensor) -> (torch.Tensor, torch.Tensor, torch.Tensor):
        img_pt = default_transform(img_pil).unsqueeze(0).to(device)  # [1, 3, H, W]

        # Embed the watermark message into the image
        # Mask to use. 1 values correspond to pixels where the watermark will be placed.
        multi_wm_img = img_pt.clone()
        for ii in range(len(wm_msgs)):
            wm_msg, mask = wm_msgs[ii].unsqueeze(0), wm_masks[ii]
            outputs = wam.embed(img_pt, wm_msg)
            multi_wm_img = outputs['imgs_w'] * mask + multi_wm_img * (1 - mask)

        return img_pt, multi_wm_img, wm_masks.sum(0)

    def create_bounding_mask(img_size, boxes):
        """Create a binary mask from bounding boxes.

        Args:
            img_size (tuple): Image size (height, width)
            boxes (list): List of tuples (x1, y1, x2, y2) defining bounding boxes

        Returns:
            torch.Tensor: Binary mask tensor
        """
        mask = torch.zeros(img_size)
        for x1, y1, x2, y2 in boxes:
            mask[y1:y2, x1:x2] = 1
        return mask

    def centroid_to_hex(centroid):
        binary_int = 0
        for bit in centroid:
            binary_int = (binary_int << 1) | int(bit.item())
        return format(binary_int, '08x')

    # Load the model
    wam = load_wam()

    def detect_watermark(image, multi, timeout):
        if image is None:
            return None, None, None, {"status": "error", "messages": [], "error": "No image provided"}

        start_time = time.time()

        img_pil = Image.fromarray(image).convert("RGB")
        det_img, mask_preds_res, message_pred_inf, positions, centroids = image_detect(img_pil, multi, timeout)

        # Convert tensor images to numpy for display
        pred_mask = torch_to_np(mask_preds_res.detach().repeat(1, 3, 1, 1))

        cluster_viz = None
        message_json = {
            "status": "none-detected"
        }

        if message_pred_inf is not None:
            cluster_viz = pred_mask

            centroid_hex = centroid_to_hex(message_pred_inf[0])
            centroid_hex_array = "-".join([centroid_hex[i:i+4] for i in range(0, len(centroid_hex), 4)])
            message_json['status'] = "one-detected"
            message_json['message'] = centroid_hex_array

        # Create cluster visualization
        if positions is not None:
            resize_ori = transforms.Resize(det_img.shape[-2:])
            rgb_image = torch.zeros((3, positions.shape[-1], positions.shape[-2]), dtype=torch.uint8)
            for value, color in color_map.items():
                mask_ = positions == value
                for channel, color_value in enumerate(color):
                    rgb_image[channel][mask_.squeeze()] = color_value
            rgb_image = resize_ori(rgb_image.float()/255)
            cluster_viz = rgb_image.permute(1, 2, 0).numpy()

            # Create message output as JSON
            messages = []
            for key in centroids.keys():
                centroid_hex = centroid_to_hex(centroids[key])
                centroid_hex_array = "-".join([centroid_hex[i:i+4] for i in range(0, len(centroid_hex), 4)])
                messages.append({
                    "id": int(key),
                    "message": centroid_hex_array,
                    "color": color_map[key]
                })
            message_json['status'] = "multi-detected"
            message_json['cluster'] = messages

        run_time = time.time() - start_time
        message_json['run_time'] = run_time

        color_md = []
        if "cluster" in message_json:
            for item in message_json["cluster"]:
                key = item["id"]
                msg = item["message"]
                color_md.append(f'<code style="color:rgb{tuple(color_map[key])}">{msg}</code>')

        return pred_mask, cluster_viz, message_json, "\n".join(color_md)

    def embed_watermark(image, wm_num, wm_type, wm_str, wm_loc):
        if image is None:
            return None, None, {
                "status": "failure",
                "messages": "No image provided"
            }

        if wm_type == "input":
            if not re.match(r"^([0-9A-F]{4}-[0-9A-F]{4}-){%d}[0-9A-F]{4}-[0-9A-F]{4}$" % (wm_num-1), wm_str):
                tip = "-".join([f"FFFF-{_}{_}{_}{_}" for _ in range(wm_num)])
                return None, None, {
                    "status": "failure",
                    "messages": f"Invalid type input. Please use {tip}"
                }

        if wm_loc == "bounding":
            if ROI_coordinates['clicks'] != wm_num * 2:
                return None, None, {
                    "status": "failure",
                    "messages": "Invalid location input. Please draw at least %d bounding ROI" % (wm_num)
                }

        img_pil = Image.fromarray(image).convert("RGB")

        # Generate watermark messages based on type
        wm_msgs = []
        if wm_type == "random":
            chars = '-'.join(''.join(random.choice(string.hexdigits) for _ in range(4)) for _ in range(wm_num * 2))
            wm_str = chars.lower()
        wm_hex = wm_str.replace("-", "")
        for i in range(0, len(wm_hex), 8):
            chunk = wm_hex[i:i+8]
            binary = bin(int(chunk, 16))[2:].zfill(32)
            wm_msgs.append([int(b) for b in binary])
        # Define a 32-bit message to be embedded into the images
        wm_msgs = torch.tensor(wm_msgs, dtype=torch.float32).to(device)

        # Create mask based on location type
        wm_masks = None
        if wm_loc == "random":
            img_pt = default_transform(img_pil).unsqueeze(0).to(device)
            # To ensure at least `proportion_masked %` of the width is randomly usable,
            # otherwise, it is easy to enter an infinite loop and fail to find a usable width.
            mask_percentage = min(img_pil.height, img_pil.width) / max(img_pil.height, img_pil.width) * proportion_masked / wm_num
            wm_masks = create_random_mask(img_pt, num_masks=wm_num, mask_percentage=mask_percentage)
        elif wm_loc == "bounding" and sections:
            wm_masks = torch.zeros((len(sections), 1, img_pil.height, img_pil.width), dtype=torch.float32).to(device)
            for idx, ((x_start, y_start, x_end, y_end), _) in enumerate(sections):
                left = min(x_start, x_end)
                right = max(x_start, x_end)
                top = min(y_start, y_end)
                bottom = max(y_start, y_end)
                wm_masks[idx, 0, top:bottom, left:right] = 1


        img_pt, embed_img_pt, embed_mask_pt = image_embed(img_pil, wm_msgs, wm_masks)

        # Convert to numpy for display
        img_np = torch_to_np(embed_img_pt.detach())
        mask_np = torch_to_np(embed_mask_pt.detach().expand(3, -1, -1))
        message_json = {
            "status": "success",
            "messages": wm_str
        }
        return img_np, mask_np, message_json



    # ROI means Region Of Interest. It is the region where the user clicks
    # to specify the location of the watermark.
    ROI_coordinates = {
        'x_temp': 0,
        'y_temp': 0,
        'x_new': 0,
        'y_new': 0,
        'clicks': 0,
    }

    sections = []

    def get_select_coordinates(img, evt: gr.SelectData, num):
        if ROI_coordinates['clicks'] >= num * 2:
            gr.Warning(f"Cant add more than {num} of Watermarks.")
            return (img, sections)

        # update new coordinates
        ROI_coordinates['clicks'] += 1
        ROI_coordinates['x_temp'] = ROI_coordinates['x_new']
        ROI_coordinates['y_temp'] = ROI_coordinates['y_new']
        ROI_coordinates['x_new'] = evt.index[0]
        ROI_coordinates['y_new'] = evt.index[1]
        # compare start end coordinates
        x_start = ROI_coordinates['x_new'] if (ROI_coordinates['x_new'] < ROI_coordinates['x_temp']) else ROI_coordinates['x_temp']
        y_start = ROI_coordinates['y_new'] if (ROI_coordinates['y_new'] < ROI_coordinates['y_temp']) else ROI_coordinates['y_temp']
        x_end = ROI_coordinates['x_new'] if (ROI_coordinates['x_new'] > ROI_coordinates['x_temp']) else ROI_coordinates['x_temp']
        y_end = ROI_coordinates['y_new'] if (ROI_coordinates['y_new'] > ROI_coordinates['y_temp']) else ROI_coordinates['y_temp']
        if ROI_coordinates['clicks'] % 2 == 0:
            sections[len(sections) - 1] = ((x_start, y_start, x_end, y_end), f"Mask {len(sections)}")
            # both start and end point get
            return (img, sections)
        else:
            point_width = int(img.shape[0]*0.05)
            sections.append(((ROI_coordinates['x_new'], ROI_coordinates['y_new'],
                            ROI_coordinates['x_new'] + point_width, ROI_coordinates['y_new'] + point_width),
                            f"Click second point for Mask {len(sections) + 1}"))
            return (img, sections)

    def del_select_coordinates(img, evt: gr.SelectData):
        del sections[evt.index]
        # recreate section names
        for i in range(len(sections)):
            sections[i] = (sections[i][0], f"Mask {i + 1}")

        # last section clicking second point not complete
        if ROI_coordinates['clicks'] % 2 != 0:
            if len(sections) == evt.index:
                # delete last section
                ROI_coordinates['clicks'] -= 1
            else:
                # recreate last section name for second point
                ROI_coordinates['clicks'] -= 2
                sections[len(sections) - 1] = (sections[len(sections) - 1][0], f"Click second point for Mask {len(sections) + 1}")
        else:
            ROI_coordinates['clicks'] -= 2

        return (img[0], sections)

    with gr.Blocks(title="Watermark Anything Demo") as demo:
        gr.Markdown("""
        # Watermark Anything Demo
        This app demonstrates watermark detection and embedding using the Watermark Anything model.
        Find the project [here](https://github.com/facebookresearch/watermark-anything).
        """)

        with gr.Tabs():
            with gr.TabItem("Embed Watermark"):
                with gr.Row():
                    with gr.Column():
                        embedding_img = gr.Image(label="Input Image", type="numpy")

                    with gr.Column():
                        embedding_box = gr.AnnotatedImage(
                            visible=False,
                            label="ROI: Click on left 'Input Image'",
                            color_map={
                                "ROI of Watermark embedding": "#9987FF",
                                "Click second point for ROI": "#f44336"}
                        )

                        embedding_num = gr.Slider(1, 5, value=1, step=1, label="Number of Watermarks")
                        embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
                        embedding_str = gr.Textbox(label="Watermark Text", visible=False, show_copy_button=True)
                        embedding_loc = gr.Radio(["random", "bounding"], value="random", label="Location", info="Location of watermarks")

                        embedding_btn = gr.Button("Embed Watermark")
                        marked_msg = gr.JSON(label="Marked Messages")
                with gr.Row():
                    marked_image = gr.Image(label="Watermarked Image")
                    marked_mask = gr.Image(label="Position of the watermark")

                embedding_img.select(
                    fn=get_select_coordinates,
                    inputs=[embedding_img, embedding_num],
                    outputs=embedding_box)
                embedding_box.select(
                    fn=del_select_coordinates,
                    inputs=embedding_box,
                    outputs=embedding_box
                )

                # The inability to dynamically render `AnnotatedImage` is because,
                # when placed inside `gr.Column()`, it prevents listeners from being added to controls outside the column.
                # Dynamically adding a select listener will not change the cursor shape of the Image.
                # So `render` cannot work properly in this scenario.
                #
                # @gr.render(inputs=embedding_loc)
                # def show_split(wm_loc):
                #     if wm_loc == "bounding":
                #         embedding_img.select(
                #             fn=get_select_coordinates,
                #             inputs=[embedding_img, embedding_num],
                #             outputs=embedding_box)
                #         embedding_box.select(
                #             fn=del_select_coordinates,
                #             inputs=embedding_box,
                #             outputs=embedding_box
                #         )
                #     else:
                #         embedding_img.select()

                def visible_box_image(img, wm_loc):
                    if wm_loc == "bounding":
                        return gr.update(visible=True, value=(img,sections))
                    else:
                        sections.clear()
                        ROI_coordinates['clicks'] = 0
                        return gr.update(visible=False, value=(img,sections))
                embedding_loc.change(
                    fn=visible_box_image,
                    inputs=[embedding_img, embedding_loc],
                    outputs=[embedding_box]
                )

                def visible_text_label(embedding_type, embedding_num):
                    if embedding_type == "input":
                        tip = "-".join([f"FFFF-{_}{_}{_}{_}" for _ in range(embedding_num)])
                        return gr.update(visible=True, label=f"Watermark Text (Format: {tip})")
                    else:
                        return gr.update(visible=False)

                def check_embedding_str(embedding_str, embedding_num):
                    if not re.match(r"^([0-9A-F]{4}-[0-9A-F]{4}-){%d}[0-9A-F]{4}-[0-9A-F]{4}$" % (embedding_num-1), embedding_str):
                        tip = "-".join([f"FFFF-{_}{_}{_}{_}" for _ in range(embedding_num)])
                        gr.Warning(f"Invalid format. Please use {tip}", duration=0)
                        return gr.update(interactive=False)
                    else:
                        return gr.update(interactive=True)

                embedding_num.change(
                    fn=visible_text_label,
                    inputs=[embedding_type, embedding_num],
                    outputs=[embedding_str]
                )
                embedding_type.change(
                    fn=visible_text_label,
                    inputs=[embedding_type, embedding_num],
                    outputs=[embedding_str]
                )
                embedding_str.change(
                    fn=check_embedding_str,
                    inputs=[embedding_str, embedding_num],
                    outputs=[embedding_btn]
                )

                embedding_btn.click(
                    fn=embed_watermark,
                    inputs=[embedding_img, embedding_num, embedding_type, embedding_str, embedding_loc],
                    outputs=[marked_image, marked_mask, marked_msg]
                )

            with gr.TabItem("Detect Watermark"):
                with gr.Row():
                    with gr.Column():
                        detecting_img = gr.Image(label="Input Image", type="numpy", height=512)
                    with gr.Column():
                        tip_md = gr.Markdown("""
                        **Note:** The split operation might not yield any results,
                        and subprocesses will be used to support timeout.

                        On the Windows platform, creating subprocesses will be noticeably slower.
                        """)
                        multi_ckb = gr.Checkbox(label="Split into multiple", value=False)
                        timeout_sli = gr.Slider(1, max_timeout, value=30, step=1, label="Timeout of multiple", visible=False)
                        detecting_btn = gr.Button("Detect Watermark")
                        predicted_messages = gr.JSON(label="Detected Messages")
                        color_cluster = gr.Markdown()
                with gr.Row():
                    predicted_mask = gr.Image(label="Predicted Watermark Position")
                    predicted_cluster = gr.Image(label="Watermark Clusters")

                detecting_img.change(
                    fn=lambda x: gr.update(value=False),
                    inputs=detecting_img,
                    outputs=multi_ckb
                )
                multi_ckb.change(
                    fn=lambda x: gr.update(visible=x),
                    inputs=multi_ckb,
                    outputs=timeout_sli
                )
                detecting_btn.click(
                    fn=detect_watermark,
                    inputs=[detecting_img, multi_ckb, timeout_sli],
                    outputs=[predicted_mask, predicted_cluster, predicted_messages, color_cluster]
                )


    if __name__ == '__main__':
        demo.launch()