Spaces:
Runtime error
Runtime error
import torch | |
from .data_util import face_class, face_shape | |
import random | |
def reparameterize(mu, logvar): | |
""" | |
Reparameterization trick to sample from N(mu, var) from | |
N(0,1). | |
:param mu: (Tensor) Mean of the latent Gaussian [B x D] | |
:param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D] | |
:return: (Tensor) [B x D] | |
""" | |
std = torch.exp(0.5 * logvar) | |
eps = torch.randn_like(std) | |
return eps * std + mu | |
def mix(w18_F, w18_M, w18_syn): | |
for k in [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]: | |
w18_syn[:, k, :] = w18_F[:, k, :] * 0.5 + w18_M[:, k, :] * 0.5 | |
return w18_syn | |
def fuse_latent(w2sub34, sub2w, w18_F, w18_M, random_fakes, fixed_gamma=0.47, fixed_eta=0.4): | |
device = w18_F.device | |
mu_F, var_F, sub34_F = w2sub34(w18_F) | |
mu_M, var_M, sub34_M = w2sub34(w18_M) | |
new_sub34 = torch.zeros_like(sub34_F, dtype=torch.float, device=device) | |
if len(random_fakes) == 0: # EXCEPTION HANDLER (No matching gene pool) | |
random_fakes = [(mu_F.cpu(), var_F.cpu())] + [(mu_M.cpu(), var_M.cpu())] | |
# region genetic variation weights | |
weights = {} | |
for i in face_class: | |
weights[i] = (random.uniform(0, 1 - float(fixed_gamma)), float(fixed_gamma)) | |
# select genetic regions | |
cur_class = random.sample(face_class, int(len(face_class) * (1 - float(fixed_eta)))) | |
for i, classname in enumerate(face_class): | |
if classname == 'background': | |
new_sub34[:, :, i, :] = reparameterize(mu_F[:, :, i, :], var_F[:, :, i, :]) | |
continue | |
if classname in cur_class: # # corresponding to t = 0 in Eq.10 | |
fake_mu, fake_var = random.choice(random_fakes) | |
w_i, b_i = weights[classname] | |
new_sub34[:, :, i, :] = reparameterize( | |
mu_F[:, :, i, :] * w_i + fake_mu[:, :, i, :].to(device) * b_i + mu_M[:, :, i, :] * (1 - w_i - b_i), | |
var_F[:, :, i, :] * w_i + fake_var[:, :, i, :].to(device) * b_i + var_M[:, :, i, :] * (1 - w_i - b_i)) | |
else: # corresponding to t = 1 in Eq.10 | |
fake_mu, fake_var = random.choice(random_fakes) | |
fake_latent = reparameterize(fake_mu[:, :, i, :], fake_var[:, :, i, :]).to(device) | |
var = fake_latent | |
new_sub34[:, :, i, :] = new_sub34[:, :, i, :] + var | |
w18_syn = sub2w(new_sub34) | |
w18_syn = mix(w18_F, w18_M, w18_syn) | |
return w18_syn | |