Spaces:
Runtime error
Runtime error
Commit
·
7b0ac85
1
Parent(s):
fc8546c
Update sketch_helper.py
Browse files- sketch_helper.py +22 -1
sketch_helper.py
CHANGED
@@ -12,7 +12,7 @@ def get_high_freq_colors(image):
|
|
12 |
high_freq_colors = [c for c in sorted_colors if c[0] > max(2, mean_freq)] # Ignore colors that occur very few times (less than 2) or less than half the average frequency
|
13 |
return high_freq_colors
|
14 |
|
15 |
-
def
|
16 |
# Get color histogram
|
17 |
hist, _ = np.histogramdd(image.reshape(-1, 3), bins=(256, 256, 256), range=((0, 256), (0, 256), (0, 256)))
|
18 |
# Get most frequent colors
|
@@ -24,6 +24,27 @@ def color_quantization(image, n_colors):
|
|
24 |
labels = np.argmin(dists, axis=1)
|
25 |
return colors[labels].reshape((image.shape[0], image.shape[1], 3)).astype(np.uint8)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def create_binary_matrix(img_arr, target_color):
|
28 |
# Create mask of pixels with target color
|
29 |
mask = np.all(img_arr == target_color, axis=-1)
|
|
|
12 |
high_freq_colors = [c for c in sorted_colors if c[0] > max(2, mean_freq)] # Ignore colors that occur very few times (less than 2) or less than half the average frequency
|
13 |
return high_freq_colors
|
14 |
|
15 |
+
def color_quantization_old(image, n_colors):
|
16 |
# Get color histogram
|
17 |
hist, _ = np.histogramdd(image.reshape(-1, 3), bins=(256, 256, 256), range=((0, 256), (0, 256), (0, 256)))
|
18 |
# Get most frequent colors
|
|
|
24 |
labels = np.argmin(dists, axis=1)
|
25 |
return colors[labels].reshape((image.shape[0], image.shape[1], 3)).astype(np.uint8)
|
26 |
|
27 |
+
def color_quantization(image, n_colors=8, rounds=1):
|
28 |
+
h, w = image.shape[:2]
|
29 |
+
samples = np.zeros([h*w,3], dtype=np.float32)
|
30 |
+
count = 0
|
31 |
+
|
32 |
+
for x in range(h):
|
33 |
+
for y in range(w):
|
34 |
+
samples[count] = image[x][y]
|
35 |
+
count += 1
|
36 |
+
|
37 |
+
compactness, labels, centers = cv2.kmeans(samples,
|
38 |
+
clusters,
|
39 |
+
None,
|
40 |
+
(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10000, 0.0001),
|
41 |
+
rounds,
|
42 |
+
cv2.KMEANS_RANDOM_CENTERS)
|
43 |
+
|
44 |
+
centers = np.uint8(centers)
|
45 |
+
res = centers[labels.flatten()]
|
46 |
+
return res.reshape((image.shape))
|
47 |
+
|
48 |
def create_binary_matrix(img_arr, target_color):
|
49 |
# Create mask of pixels with target color
|
50 |
mask = np.all(img_arr == target_color, axis=-1)
|