File size: 15,771 Bytes
b2c8596
 
 
 
 
 
 
a0cc202
eb4334e
 
 
 
 
 
 
 
b2c8596
 
 
 
a0cc202
 
 
 
b2c8596
a0cc202
 
 
 
 
 
 
b2c8596
a0cc202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb4334e
a0cc202
eb4334e
a0cc202
eb4334e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0cc202
eb4334e
58ac711
6d21cff
 
 
58ac711
 
 
 
 
 
 
6d21cff
58ac711
 
 
 
 
 
 
b2c8596
6d21cff
 
 
 
 
 
 
 
 
 
576f095
b2c8596
 
6d21cff
 
 
 
b2c8596
6d21cff
b2c8596
576f095
6d21cff
 
b2c8596
6d21cff
 
 
 
 
 
 
 
 
 
b2c8596
6d21cff
 
b2c8596
6d21cff
 
b2c8596
 
 
 
 
 
6d21cff
b2c8596
6d21cff
 
eafe433
6d21cff
eafe433
 
b2c8596
 
58ac711
 
 
eafe433
58ac711
 
eafe433
 
 
eb4334e
b2c8596
6d21cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eafe433
6d21cff
 
b2c8596
6d21cff
 
 
 
 
 
 
 
 
 
 
 
b2c8596
eafe433
 
b2c8596
 
eb4334e
3dd4371
b2c8596
 
 
 
8ff21a8
0d3cbf7
 
 
 
 
 
 
 
df2aeaf
0d3cbf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e5b250
bd81c24
e34dfbf
 
 
 
 
 
 
 
 
 
 
117ba37
f840f8e
c2802dd
 
2c674b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2802dd
 
b2c8596
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import jax
import jax.numpy as jnp
from flax import jax_utils
from flax.training.common_utils import shard
from PIL import Image
from argparse import Namespace
import gradio as gr
import copy # added
import numpy as np
import mediapipe as mp
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
import cv2

from diffusers import (
    FlaxControlNetModel,
    FlaxStableDiffusionControlNetPipeline,
)
right_style_lm = copy.deepcopy(solutions.drawing_styles.get_default_hand_landmarks_style())
left_style_lm = copy.deepcopy(solutions.drawing_styles.get_default_hand_landmarks_style())
right_style_lm[0].color=(251, 206, 177)
left_style_lm[0].color=(255, 255, 225)

def draw_landmarks_on_image(rgb_image, detection_result, overlap=False, hand_encoding=False):
    hand_landmarks_list = detection_result.hand_landmarks
    handedness_list = detection_result.handedness
    if overlap:
        annotated_image = np.copy(rgb_image)
    else:
        annotated_image = np.zeros_like(rgb_image)

    # Loop through the detected hands to visualize.
    for idx in range(len(hand_landmarks_list)):
        hand_landmarks = hand_landmarks_list[idx]
        handedness = handedness_list[idx]
        # Draw the hand landmarks.
        hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
        hand_landmarks_proto.landmark.extend([
                landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in hand_landmarks
        ])
        if hand_encoding:
            if handedness[0].category_name == "Left":
                solutions.drawing_utils.draw_landmarks(
                        annotated_image,
                        hand_landmarks_proto,
                        solutions.hands.HAND_CONNECTIONS,
                        left_style_lm,
                        solutions.drawing_styles.get_default_hand_connections_style())
            if handedness[0].category_name == "Right":
                solutions.drawing_utils.draw_landmarks(
                        annotated_image,
                        hand_landmarks_proto,
                        solutions.hands.HAND_CONNECTIONS,
                        right_style_lm,
                        solutions.drawing_styles.get_default_hand_connections_style())
        else:
            solutions.drawing_utils.draw_landmarks(
                    annotated_image,
                    hand_landmarks_proto,
                    solutions.hands.HAND_CONNECTIONS,
                    solutions.drawing_styles.get_default_hand_landmarks_style(),
                    solutions.drawing_styles.get_default_hand_connections_style())

    return annotated_image

def generate_annotation(img, overlap=False, hand_encoding=False):
    """img(input): numpy array
       annotated_image(output): numpy array
    """
    # STEP 2: Create an HandLandmarker object.
    base_options = python.BaseOptions(model_asset_path='hand_landmarker.task')
    options = vision.HandLandmarkerOptions(base_options=base_options,
                                        num_hands=2)
    detector = vision.HandLandmarker.create_from_options(options)

    # STEP 3: Load the input image.
    image = mp.Image(
        image_format=mp.ImageFormat.SRGB, data=img)

    # STEP 4: Detect hand landmarks from the input image.
    detection_result = detector.detect(image)

    # STEP 5: Process the classification result. In this case, visualize it.
    annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result, overlap=overlap, hand_encoding=hand_encoding)
    return annotated_image



std_args = Namespace(
        pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
        revision="non-ema",
        from_pt=True,
        controlnet_model_name_or_path="Vincent-luo/controlnet-hands",
        controlnet_revision=None,
        controlnet_from_pt=False,
    )
enc_args = Namespace(
        pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
        revision="non-ema",
        from_pt=True,
        controlnet_model_name_or_path="MakiPan/controlnet-encoded-hands-130k",
        controlnet_revision=None,
        controlnet_from_pt=False,
    )

std_controlnet, std_controlnet_params = FlaxControlNetModel.from_pretrained(
    std_args.controlnet_model_name_or_path,
    revision=std_args.controlnet_revision,
    from_pt=std_args.controlnet_from_pt,
    dtype=jnp.float32, # jnp.bfloat16
)
enc_controlnet, enc_controlnet_params = FlaxControlNetModel.from_pretrained(
    enc_args.controlnet_model_name_or_path,
    revision=enc_args.controlnet_revision,
    from_pt=enc_args.controlnet_from_pt,
    dtype=jnp.float32, # jnp.bfloat16
)



std_pipeline, std_pipeline_params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
    std_args.pretrained_model_name_or_path,
    # tokenizer=tokenizer,
    controlnet=std_controlnet,
    safety_checker=None,
    dtype=jnp.float32, # jnp.bfloat16
    revision=std_args.revision,
    from_pt=std_args.from_pt,
)
enc_pipeline, enc_pipeline_params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
    enc_args.pretrained_model_name_or_path,
    # tokenizer=tokenizer,
    controlnet=enc_controlnet,
    safety_checker=None,
    dtype=jnp.float32, # jnp.bfloat16
    revision=enc_args.revision,
    from_pt=enc_args.from_pt,
)


std_pipeline_params["controlnet"] = std_controlnet_params
std_pipeline_params = jax_utils.replicate(std_pipeline_params)

enc_pipeline_params["controlnet"] = enc_controlnet_params
enc_pipeline_params = jax_utils.replicate(enc_pipeline_params)

rng = jax.random.PRNGKey(0)
num_samples = jax.device_count()
prng_seed = jax.random.split(rng, jax.device_count())


def infer(prompt, negative_prompt, image, model_type="Standard"):
    prompts = num_samples * [prompt]
    if model_type=="Standard":
        prompt_ids = std_pipeline.prepare_text_inputs(prompts)
    elif model_type=="Hand Encoding":
        prompt_ids = enc_pipeline.prepare_text_inputs(prompts)
    else:
        pass
    prompt_ids = shard(prompt_ids)

    if model_type=="Standard":
        annotated_image = generate_annotation(image, overlap=False, hand_encoding=False)
        overlap_image = generate_annotation(image, overlap=True, hand_encoding=False)
    elif model_type=="Hand Encoding":
        annotated_image = generate_annotation(image, overlap=False, hand_encoding=True)
        overlap_image = generate_annotation(image, overlap=True, hand_encoding=True)

    else:
        pass
    validation_image = Image.fromarray(annotated_image).convert("RGB")

    if model_type=="Standard":
        processed_image = std_pipeline.prepare_image_inputs(num_samples * [validation_image])
        processed_image = shard(processed_image)

        negative_prompt_ids = std_pipeline.prepare_text_inputs([negative_prompt] * num_samples)
        negative_prompt_ids = shard(negative_prompt_ids)

        images = std_pipeline(
            prompt_ids=prompt_ids,
            image=processed_image,
            params=std_pipeline_params,
            prng_seed=prng_seed,
            num_inference_steps=50,
            neg_prompt_ids=negative_prompt_ids,
            jit=True,
        ).images
    elif model_type=="Hand Encoding":
        processed_image = enc_pipeline.prepare_image_inputs(num_samples * [validation_image])
        processed_image = shard(processed_image)

        negative_prompt_ids = enc_pipeline.prepare_text_inputs([negative_prompt] * num_samples)
        negative_prompt_ids = shard(negative_prompt_ids)

        images = enc_pipeline(
            prompt_ids=prompt_ids,
            image=processed_image,
            params=enc_pipeline_params,
            prng_seed=prng_seed,
            num_inference_steps=50,
            neg_prompt_ids=negative_prompt_ids,
            jit=True,
        ).images

    else:
        pass
    images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])

    results = [i for i in images]
    return [overlap_image, annotated_image] + results


with gr.Blocks(theme='gradio/soft') as demo:
    gr.Markdown("## Stable Diffusion with Hand Control")
    gr.Markdown("This model is a ControlNet model using MediaPipe hand landmarks for control.")
    with gr.Box():
        gr.Markdown("""
    <style>
        ul {padding-left: 5em;}
    </style>
    <center><h1>Summary</h1></center>

    As Stable diffusion and other diffusion models are notoriously poor at generating realistic hands for our project we decided to train a ControlNet model using MediaPipes landmarks in order to generate more realistic hands avoiding common issues such as unrealistic positions and irregular digits.
    <br>
    We opted to use the [HAnd Gesture Recognition Image Dataset](https://github.com/hukenovs/hagrid) (HaGRID) and [MediaPipe's Hand Landmarker](https://developers.google.com/mediapipe/solutions/vision/hand_landmarker) to train a control net that could potentially be used independently or as an in-painting tool.
    To preprocess the data there were three options we considered:
    <ul>
        <li>The first was to use Mediapipes built-in draw landmarks function. This was an obvious first choice however we noticed with low training steps that the model couldn't easily distinguish handedness and would often generate the wrong hand for the conditioning image.</li>
    <center>
    <table><tr>
    <td> 
      <p align="center" style="padding: 10px">
        <img alt="Forwarding" src="https://datasets-server.huggingface.co/assets/MakiPan/hagrid250k-blip2/--/MakiPan--hagrid250k-blip2/train/29/image/image.jpg" width="200">
        <br>
        <em style="color: grey">Original Image</em>
      </p> 
    </td>
    <td> 
      <p align="center">
        <img alt="Routing" src="https://datasets-server.huggingface.co/assets/MakiPan/hagrid250k-blip2/--/MakiPan--hagrid250k-blip2/train/29/conditioning_image/image.jpg" width="200">
        <br>
        <em style="color: grey">Conditioning Image</em>
      </p> 
    </td>
    </tr></table>
    </center>
        <li>To counter this issue we changed the palm landmark colors with the intention to keep the color similar in order to learn that they provide similar information, but different to make the model know which hands were left or right.</li>   
    <center>
    <table><tr>
    <td> 
      <p align="center" style="padding: 10px">
        <img alt="Forwarding" src="https://datasets-server.huggingface.co/assets/MakiPan/hagrid-hand-enc-250k/--/MakiPan--hagrid-hand-enc-250k/train/96/image/image.jpg" width="200">
        <br>
        <em style="color: grey">Original Image</em>
      </p> 
    </td>
    <td> 
      <p align="center">
        <img alt="Routing" src="https://datasets-server.huggingface.co/assets/MakiPan/hagrid-hand-enc-250k/--/MakiPan--hagrid-hand-enc-250k/train/96/conditioning_image/image.jpg" width="200">
        <br>
        <em style="color: grey">Conditioning Image</em>
      </p> 
    </td>
    </tr></table>
    </center>
        <li>The last option was to use <a href="https://ai.googleblog.com/2020/12/mediapipe-holistic-simultaneous-face.html">MediaPipe Holistic</a> to provide pose face and hand landmarks to the ControlNet. This method was promising in theory, however, the HaGRID dataset was not suitable for this method as the Holistic model performs poorly with partial body and obscurely cropped images.</li>
    </ul>
    We anecdotally determined that when trained at lower steps the encoded hand model performed better than the standard MediaPipe model due to implied handedness. We theorize that with a larger dataset of more full-body hand and pose classifications, Holistic landmarks will provide the best images in the future however for the moment the hand-encoded model performs best.
    """)
    
    # Information links
    with gr.Box():
        gr.Markdown("""<h2><b>LINKS πŸ”—</b></h2>""")
        with gr.Accordion("Models πŸš€", open=False):
            gr.Markdown("""
            <h4><a href="https://huggingface.co/Vincent-luo/controlnet-hands">Standard Model</a></h4>
            <h4> <a href="https://huggingface.co/MakiPan/controlnet-encoded-hands-130k/">Model using Hand Encoding</a></h4>
            """)

        with gr.Accordion("Datasets πŸ’Ύ", open=False):
            gr.Markdown("""
            <h4> <a href="https://huggingface.co/datasets/MakiPan/hagrid250k-blip2">Dataset for Standard Model</a></h4>
            <h4> <a href="https://huggingface.co/datasets/MakiPan/hagrid-hand-enc-250k">Dataset for Hand Encoding Model</a></h4>
            """)

        with gr.Accordion("Preprocessing Scripts πŸ“‘", open=False):
            gr.Markdown("""
            <h4> <a href="https://github.com/Maki-DS/Jax-Controlnet-hand-training/blob/main/normal-preprocessing.py">Standard Data Preprocessing Script</a></h4>
            <h4> <a href="https://github.com/Maki-DS/Jax-Controlnet-hand-training/blob/main/Hand-encoded-preprocessing.py">Hand Encoding Data Preprocessing Script</a></h4></center>
            """)

    # Model input parameters
    model_type = gr.Radio(["Standard", "Hand Encoding"], value="Standard", label="Model preprocessing", info="We developed two models, one with standard MediaPipe landmarks, and one with different (but similar) coloring on palm landmarks to distinguish left and right")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative Prompt")
            input_image = gr.Image(label="Input Image")
            # output_image = gr.Gallery(label='Output Image', show_label=False, elem_id="gallery").style(grid=3, height='auto')
            submit_btn = gr.Button(value = "Submit")
            # inputs = [prompt_input, negative_prompt, input_image]
            # submit_btn.click(fn=infer, inputs=inputs, outputs=[output_image])
    
        with gr.Column():
            output_image = gr.Gallery(label='Output Image', show_label=False, elem_id="gallery").style(grid=2, height='auto')
    
    gr.Examples(
        examples=[
            [
               "a woman is making an ok sign in front of a painting",
               "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
               "example.png"
            ],
            [
               "a man with his hands up in the air making a rock sign",
               "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
               "example1.png"
            ],
            [
               "a man is making a thumbs up gesture",
               "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
               "example2.png"
            ],
            [
               "a woman is holding up her hand in front of a window",
               "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
               "example3.png"
            ],
            [
               "a man with his finger on his lips",
               "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
               "example4.png"
            ],
        ],
        inputs=[prompt_input, negative_prompt, input_image, model_type],
        outputs=[output_image],
        fn=infer,
        cache_examples=True,
    )
            
    inputs = [prompt_input, negative_prompt, input_image, model_type]
    submit_btn.click(fn=infer, inputs=inputs, outputs=[output_image])

demo.launch()