Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -40,20 +40,6 @@ def get_transcript(file):
|
|
40 |
transcript = data['results'].values[1][0]['transcript']
|
41 |
transcript = transcript.lower()
|
42 |
return transcript
|
43 |
-
#
|
44 |
-
"""preprocess tags"""
|
45 |
-
if tags:
|
46 |
-
tags = [x.lower().strip() for x in tags.split(",")]
|
47 |
-
tags_tokens = concat_tokens(tags)
|
48 |
-
tags_tokens.pop("KPS")
|
49 |
-
with torch.no_grad():
|
50 |
-
outputs_tags = model(**tags_tokens)
|
51 |
-
pools_tags = pool_embeddings(outputs_tags, tags_tokens).detach().numpy()
|
52 |
-
token_dict = {}
|
53 |
-
for tag,embedding in zip(tags,pools_tags):
|
54 |
-
token_dict[tag] = embedding
|
55 |
-
|
56 |
-
"""Code related with processing text, extracting KPs, and doing distance to tag"""
|
57 |
def concat_tokens(sentences):
|
58 |
tokens = {'input_ids': [], 'attention_mask': [], 'KPS': {}}
|
59 |
for sentence, values in sentences.items():
|
@@ -70,6 +56,21 @@ def concat_tokens(sentences):
|
|
70 |
tokens['attention_mask'] = torch.stack(tokens['attention_mask'])
|
71 |
return tokens
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def calculate_weighted_embed_dist(out, tokens, weight, text,kp_dict, idx, exclude_text=False,exclude_words=False):
|
74 |
sim_dict = {}
|
75 |
pools = pool_embeddings_count(out, tokens, idx).detach().numpy()
|
|
|
40 |
transcript = data['results'].values[1][0]['transcript']
|
41 |
transcript = transcript.lower()
|
42 |
return transcript
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def concat_tokens(sentences):
|
44 |
tokens = {'input_ids': [], 'attention_mask': [], 'KPS': {}}
|
45 |
for sentence, values in sentences.items():
|
|
|
56 |
tokens['attention_mask'] = torch.stack(tokens['attention_mask'])
|
57 |
return tokens
|
58 |
|
59 |
+
"""preprocess tags"""
|
60 |
+
if tags:
|
61 |
+
tags = [x.lower().strip() for x in tags.split(",")]
|
62 |
+
tags_tokens = concat_tokens(tags)
|
63 |
+
tags_tokens.pop("KPS")
|
64 |
+
with torch.no_grad():
|
65 |
+
outputs_tags = model(**tags_tokens)
|
66 |
+
pools_tags = pool_embeddings(outputs_tags, tags_tokens).detach().numpy()
|
67 |
+
token_dict = {}
|
68 |
+
for tag,embedding in zip(tags,pools_tags):
|
69 |
+
token_dict[tag] = embedding
|
70 |
+
|
71 |
+
"""Code related with processing text, extracting KPs, and doing distance to tag"""
|
72 |
+
|
73 |
+
|
74 |
def calculate_weighted_embed_dist(out, tokens, weight, text,kp_dict, idx, exclude_text=False,exclude_words=False):
|
75 |
sim_dict = {}
|
76 |
pools = pool_embeddings_count(out, tokens, idx).detach().numpy()
|