Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -91,16 +91,18 @@ def gradio_interface(pdf_file, query, metric):
|
|
91 |
iface = gr.Interface(
|
92 |
fn=gradio_interface,
|
93 |
inputs=[
|
94 |
-
gr.File(label="Upload PDF"),
|
95 |
gr.Textbox(label="Query"),
|
96 |
-
gr.Radio(choices=["cosine", "euclidean", "manhattan", "dot"], label="Distance Metric")
|
97 |
],
|
98 |
outputs=gr.Plot(),
|
99 |
title="Semantic Search Visualizer",
|
100 |
description="""This tool allows you to upload a PDF document, input a query, and visualize the context of the document
|
101 |
as it relates to your query. It uses UMAP for dimensionality reduction and highlights the query and its closest contexts
|
102 |
within the document based on the selected distance metric. Choose from cosine, Euclidean, Manhattan, or dot product metrics
|
103 |
-
to explore different aspects of textual similarity.
|
|
|
|
|
104 |
)
|
105 |
|
106 |
if __name__ == "__main__":
|
|
|
91 |
iface = gr.Interface(
|
92 |
fn=gradio_interface,
|
93 |
inputs=[
|
94 |
+
gr.File(label="Upload a PDF"),
|
95 |
gr.Textbox(label="Query"),
|
96 |
+
gr.Radio(choices=["cosine", "euclidean", "manhattan", "dot"], label="Choose Distance Metric")
|
97 |
],
|
98 |
outputs=gr.Plot(),
|
99 |
title="Semantic Search Visualizer",
|
100 |
description="""This tool allows you to upload a PDF document, input a query, and visualize the context of the document
|
101 |
as it relates to your query. It uses UMAP for dimensionality reduction and highlights the query and its closest contexts
|
102 |
within the document based on the selected distance metric. Choose from cosine, Euclidean, Manhattan, or dot product metrics
|
103 |
+
to explore different aspects of textual similarity.
|
104 |
+
umap args: n_neighbors=15, min_dist=0.0,
|
105 |
+
"""
|
106 |
)
|
107 |
|
108 |
if __name__ == "__main__":
|