import numpy as np
import random
import matplotlib.pyplot as plt
from matplotlib import cm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode as IMode
from PIL import Image
from ds import *
from losses import *
from networks_SRGAN import *
from utils import *
device = 'cpu'
if device == 'cuda':
dtype = torch.cuda.FloatTensor
else:
dtype = torch.FloatTensor
NetG = Generator()
model_parameters = filter(lambda p: True, NetG.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print("Number of Parameters:", params)
NetC = BayesCap(in_channels=3, out_channels=3)
ensure_checkpoint_exists('BayesCap_SRGAN.pth')
NetG.load_state_dict(torch.load('BayesCap_SRGAN.pth', map_location=device))
NetG.to(device)
NetG.eval()
ensure_checkpoint_exists('BayesCap_ckpt.pth')
NetC.load_state_dict(torch.load('BayesCap_ckpt.pth', map_location=device))
NetC.to(device)
NetC.eval()
def tensor01_to_pil(xt):
r = transforms.ToPILImage(mode='RGB')(xt.squeeze())
return r
def image2tensor(image: np.ndarray, range_norm: bool, half: bool) -> torch.Tensor:
"""Convert ``PIL.Image`` to Tensor.
Args:
image (np.ndarray): The image data read by ``PIL.Image``
range_norm (bool): Scale [0, 1] data to between [-1, 1]
half (bool): Whether to convert torch.float32 similarly to torch.half type.
Returns:
Normalized image data
Examples:
>>> image = Image.open("image.bmp")
>>> tensor_image = image2tensor(image, range_norm=False, half=False)
"""
tensor = F.to_tensor(image)
if range_norm:
tensor = tensor.mul_(2.0).sub_(1.0)
if half:
tensor = tensor.half()
return tensor
def predict(img):
"""
img: image
"""
image_size = (256,256)
upscale_factor = 4
# lr_transforms = transforms.Resize((image_size[0]//upscale_factor, image_size[1]//upscale_factor), interpolation=IMode.BICUBIC, antialias=True)
# to retain aspect ratio
lr_transforms = transforms.Resize(image_size[0]//upscale_factor, interpolation=IMode.BICUBIC, antialias=True)
# lr_transforms = transforms.Resize((128, 128), interpolation=IMode.BICUBIC, antialias=True)
img = Image.fromarray(np.array(img))
img = lr_transforms(img)
lr_tensor = image2tensor(img, range_norm=False, half=False)
xLR = lr_tensor.to(device).unsqueeze(0)
xLR = xLR.type(dtype)
# pass them through the network
with torch.no_grad():
xSR = NetG(xLR)
xSRC_mu, xSRC_alpha, xSRC_beta = NetC(xSR)
a_map = (1/(xSRC_alpha[0] + 1e-5)).to('cpu').data
b_map = xSRC_beta[0].to('cpu').data
u_map = (a_map**2)*(torch.exp(torch.lgamma(3/(b_map + 1e-2)))/torch.exp(torch.lgamma(1/(b_map + 1e-2))))
x_LR = tensor01_to_pil(xLR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1))
x_mean = tensor01_to_pil(xSR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1))
#im = Image.fromarray(np.uint8(cm.gist_earth(myarray)*255))
a_map = torch.clamp(a_map, min=0, max=0.1)
a_map = (a_map - a_map.min())/(a_map.max() - a_map.min())
x_alpha = Image.fromarray(np.uint8(cm.inferno(a_map.transpose(0,2).transpose(0,1).squeeze())*255))
b_map = torch.clamp(b_map, min=0.45, max=0.75)
b_map = (b_map - b_map.min())/(b_map.max() - b_map.min())
x_beta = Image.fromarray(np.uint8(cm.cividis(b_map.transpose(0,2).transpose(0,1).squeeze())*255))
u_map = torch.clamp(u_map, min=0, max=0.15)
u_map = (u_map - u_map.min())/(u_map.max() - u_map.min())
x_uncer = Image.fromarray(np.uint8(cm.hot(u_map.transpose(0,2).transpose(0,1).squeeze())*255))
return x_LR, x_mean, x_alpha, x_beta, x_uncer
import gradio as gr
title = "BayesCap"
method = "In this work, we propose a method (called BayesCap) to estimate the per-pixel uncertainty of a pretrained computer vision model like SRGAN (used for super-resolution). BayesCap takes the ouput of the pretrained model (in this case SRGAN), and predicts the per-pixel distribution parameters for the output, that can be used to quantify the per-pixel uncertainty. In our work, we model the per-pixel output as a Generalized Gaussian distribution that is parameterized by 3 parameters the mean, scale (alpha), and the shape (beta). As a result our model predicts these three parameters as shown below. From these 3 parameters one can compute the uncertainty as shown in this article."
description = "BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks (ECCV 2022)
" + method
article = "
BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks| Github Repo
" gr.Interface( fn=predict, inputs=gr.inputs.Image(type='pil', label="Orignal"), outputs=[ gr.outputs.Image(type='pil', label="Low-res"), gr.outputs.Image(type='pil', label="Super-res"), gr.outputs.Image(type='pil', label="Alpha"), gr.outputs.Image(type='pil', label="Beta"), gr.outputs.Image(type='pil', label="Uncertainty") ], title=title, description=description, article=article, examples=[ ["./demo_examples/tue.jpeg"], ["./demo_examples/baby.png"], ["./demo_examples/bird.png"], ["./demo_examples/butterfly.png"], ["./demo_examples/head.png"], ["./demo_examples/woman.png"], ] ).launch()