Spaces:
Runtime error
Runtime error
import numpy as np | |
import random | |
import matplotlib.pyplot as plt | |
from matplotlib import cm | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.models as models | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode as IMode | |
from PIL import Image | |
from ds import * | |
from losses import * | |
from networks_SRGAN import * | |
from utils import * | |
device = 'cpu' | |
if device == 'cuda': | |
dtype = torch.cuda.FloatTensor | |
else: | |
dtype = torch.FloatTensor | |
NetG = Generator() | |
model_parameters = filter(lambda p: True, NetG.parameters()) | |
params = sum([np.prod(p.size()) for p in model_parameters]) | |
print("Number of Parameters:", params) | |
NetC = BayesCap(in_channels=3, out_channels=3) | |
ensure_checkpoint_exists('BayesCap_SRGAN.pth') | |
NetG.load_state_dict(torch.load('BayesCap_SRGAN.pth', map_location=device)) | |
NetG.to(device) | |
NetG.eval() | |
ensure_checkpoint_exists('BayesCap_ckpt.pth') | |
NetC.load_state_dict(torch.load('BayesCap_ckpt.pth', map_location=device)) | |
NetC.to(device) | |
NetC.eval() | |
def tensor01_to_pil(xt): | |
r = transforms.ToPILImage(mode='RGB')(xt.squeeze()) | |
return r | |
def image2tensor(image: np.ndarray, range_norm: bool, half: bool) -> torch.Tensor: | |
"""Convert ``PIL.Image`` to Tensor. | |
Args: | |
image (np.ndarray): The image data read by ``PIL.Image`` | |
range_norm (bool): Scale [0, 1] data to between [-1, 1] | |
half (bool): Whether to convert torch.float32 similarly to torch.half type. | |
Returns: | |
Normalized image data | |
Examples: | |
>>> image = Image.open("image.bmp") | |
>>> tensor_image = image2tensor(image, range_norm=False, half=False) | |
""" | |
tensor = F.to_tensor(image) | |
if range_norm: | |
tensor = tensor.mul_(2.0).sub_(1.0) | |
if half: | |
tensor = tensor.half() | |
return tensor | |
def predict(img): | |
""" | |
img: image | |
""" | |
image_size = (256,256) | |
upscale_factor = 4 | |
# lr_transforms = transforms.Resize((image_size[0]//upscale_factor, image_size[1]//upscale_factor), interpolation=IMode.BICUBIC, antialias=True) | |
# to retain aspect ratio | |
lr_transforms = transforms.Resize(image_size[0]//upscale_factor, interpolation=IMode.BICUBIC, antialias=True) | |
# lr_transforms = transforms.Resize((128, 128), interpolation=IMode.BICUBIC, antialias=True) | |
img = Image.fromarray(np.array(img)) | |
img = lr_transforms(img) | |
lr_tensor = image2tensor(img, range_norm=False, half=False) | |
xLR = lr_tensor.to(device).unsqueeze(0) | |
xLR = xLR.type(dtype) | |
# pass them through the network | |
with torch.no_grad(): | |
xSR = NetG(xLR) | |
xSRC_mu, xSRC_alpha, xSRC_beta = NetC(xSR) | |
a_map = (1/(xSRC_alpha[0] + 1e-5)).to('cpu').data | |
b_map = xSRC_beta[0].to('cpu').data | |
u_map = (a_map**2)*(torch.exp(torch.lgamma(3/(b_map + 1e-2)))/torch.exp(torch.lgamma(1/(b_map + 1e-2)))) | |
x_LR = tensor01_to_pil(xLR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1)) | |
x_mean = tensor01_to_pil(xSR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1)) | |
#im = Image.fromarray(np.uint8(cm.gist_earth(myarray)*255)) | |
a_map = torch.clamp(a_map, min=0, max=0.1) | |
a_map = (a_map - a_map.min())/(a_map.max() - a_map.min()) | |
x_alpha = Image.fromarray(np.uint8(cm.inferno(a_map.transpose(0,2).transpose(0,1).squeeze())*255)) | |
b_map = torch.clamp(b_map, min=0.45, max=0.75) | |
b_map = (b_map - b_map.min())/(b_map.max() - b_map.min()) | |
x_beta = Image.fromarray(np.uint8(cm.cividis(b_map.transpose(0,2).transpose(0,1).squeeze())*255)) | |
u_map = torch.clamp(u_map, min=0, max=0.15) | |
u_map = (u_map - u_map.min())/(u_map.max() - u_map.min()) | |
x_uncer = Image.fromarray(np.uint8(cm.hot(u_map.transpose(0,2).transpose(0,1).squeeze())*255)) | |
return x_LR, x_mean, x_alpha, x_beta, x_uncer | |
import gradio as gr | |
title = "BayesCap" | |
method = "In this work, we propose a method (called BayesCap) to estimate the per-pixel uncertainty of a pretrained computer vision model like SRGAN (used for super-resolution). BayesCap takes the ouput of the pretrained model (in this case SRGAN), and predicts the per-pixel distribution parameters for the output, that can be used to quantify the per-pixel uncertainty. In our work, we model the per-pixel output as a <a href='https://en.wikipedia.org/wiki/Generalized_normal_distribution'>Generalized Gaussian distribution</a> that is parameterized by 3 parameters the mean, scale (alpha), and the shape (beta). As a result our model predicts these three parameters as shown below. From these 3 parameters one can compute the uncertainty as shown in <a href='https://en.wikipedia.org/wiki/Generalized_normal_distribution'>this article</a>." | |
description = "BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks (ECCV 2022) <br>" + method | |
article = "<p style='text-align: center'> BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks| <a href='https://github.com/ExplainableML/BayesCap'>Github Repo</a></p>" | |
gr.Interface( | |
fn=predict, | |
inputs=gr.inputs.Image(type='pil', label="Orignal"), | |
outputs=[ | |
gr.outputs.Image(type='pil', label="Low-res"), | |
gr.outputs.Image(type='pil', label="Super-res"), | |
gr.outputs.Image(type='pil', label="Alpha"), | |
gr.outputs.Image(type='pil', label="Beta"), | |
gr.outputs.Image(type='pil', label="Uncertainty") | |
], | |
title=title, | |
description=description, | |
article=article, | |
examples=[ | |
["./demo_examples/tue.jpeg"], | |
["./demo_examples/baby.png"], | |
["./demo_examples/bird.png"], | |
["./demo_examples/butterfly.png"], | |
["./demo_examples/head.png"], | |
["./demo_examples/woman.png"], | |
] | |
).launch() |