File size: 7,222 Bytes
47313bf
 
 
 
 
 
 
 
 
 
 
 
92aef63
47313bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92aef63
 
 
 
 
 
 
 
 
 
 
 
 
184d696
 
 
 
 
 
 
 
 
 
 
 
 
92aef63
184d696
 
 
 
 
92aef63
184d696
92aef63
 
 
 
 
 
184d696
135cc46
 
92aef63
 
 
 
 
 
 
 
 
 
 
 
 
 
47313bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d464517
47313bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39781d
fd71696
47313bf
 
 
 
 
 
 
 
 
 
 
 
f51a106
47313bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51b4d27
47313bf
 
92aef63
47313bf
 
b9a27c7
47313bf
 
51b4d27
b9a27c7
47313bf
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter,RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS, Chroma
from langchain.embeddings import HuggingFaceEmbeddings  # General embeddings from HuggingFace models.
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub, LlamaCpp,CTransformers # For loading transformer models.
from langchain.document_loaders import PyPDFLoader,TextLoader, JSONLoader, CSVLoader
from tempfile import NamedTemporaryFile
def get_pdf_text(pdf_docs):
    # text = ''
    # pdf_file_ = open(pdf_docs,'rb')
    # text = "example hofjin"


    # for page in pdf_reader.pages:
    #     text += page.extract_text()

    # return text
    with NamedTemporaryFile() as temp_file:
        temp_file.write(pdf_docs.getvalue())
        temp_file.seek(0)
        pdf_loader = PyPDFLoader(temp_file.name)
        # print('pdf_loader = ', pdf_loader)
        pdf_doc = pdf_loader.load()
        # print('pdf_doc = ',pdf_doc)
        return pdf_doc


def get_text_file(docs):

    with NamedTemporaryFile() as temp_file:
        temp_file.write(pdf_docs.getvalue())
        temp_file.seek(0)
        text_loader = TextLoader(temp_file.name)
        text_doc = text_loader.load()

        return text_doc



def get_csv_file(docs):
    # import pandas as pd
    # text = ''

    # data = pd.read_csv(docs)

    # for index, row in data.iterrows():
    #     item_name = row[0]
    #     row_text = item_name
    #     for col_name in data.columns[1:]:
    #         row_text += '{} is {} '.format(col_name, row[col_name])
    #     text += row_text + '\n'

    # return text

    with NamedTemporaryFile() as temp_file:
        temp_file.write(docs.getvalue())
        temp_file.seek(0)
        text_loader = CSVLoader(temp_file.name)
        text_doc = text_loader.load()

        return text_doc


def get_json_file(docs):
    with NamedTemporaryFile() as temp_file:
        temp_file.write(docs.getvalue())
        temp_file.seek(0)
        json_loader = JSONLoader(temp_file.name,
                                jq_schema = '.messages[].content',
                                text_content= False)
        json_doc = json_loader.load()

        return json_doc

def get_hwp_file(docs):
    pass

def get_docs_file(docs):
    pass





def get_text_chunks(documents):
    
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = 1000,
        chunk_overlap = 200,
        length_function= len
    )
    # text_splitter = CharacterTextSplitter(
    #     separator="\n",
    #     chunk_size=10f00,
    #     chunk_overlap=200,
    #     length_function=len
    # )
    documents = text_splitter.split_documents(documents)
    print('documents = ', documents)
    return documents


def get_vectorstore(text_chunks):
    # Load the desired embeddings model.
    embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2',
                                       model_kwargs={'device': 'cpu'})
    print('embeddings = ', embeddings)
    # embeddings = OpenAIEmbeddings()sentence-transformers/all-MiniLM-L6-v2
    # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl",
    #                                           model_kwargs={'device':'cpu'})
    vectorstore = FAISS.from_documents(text_chunks, embeddings)
    # vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings)

    return vectorstore


def get_conversation_chain(vectorstore):
    
    model_path = 'llama-2-7b-chat.Q2_K.gguf'
    # llm = ChatOpenAI()
    # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
    config = {'max_new_tokens': 2048}

    
    # llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q2_K.bin", model_type="llama", config=config)

    llm = LlamaCpp(model_path=model_path,
                   n_ctx = 4086,
                   input={"n_ctx":2048,"temperature": 0.75, "max_length": 2000, "top_p": 1},
                   verbose=True, )
    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handle_userinput(user_question):
    print('user_question =>  ', user_question)
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)

def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple PDFs",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with multiple PDFs :books:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                # get pdf text
                doc_list = []
                
                for file in docs:
                    print('file - type : ', file.type)
                    if file.type == 'text/plain':
                        #file is .txt
                        doc_list.extend(get_text_file(file))
                    elif file.type in ['application/octet-stream', 'application/pdf']:
                        #file is .pdf
                        doc_list.extend(get_pdf_text(file))
                    elif file.type == 'text/csv':
                        #file is .csv
                        doc_list.extend(get_csv_file(file))
                    elif file.type == 'application/json':
                        # file is .json
                        doc_list.extend(get_json_file(file))
                    

                # get the text chunks
                text_chunks = get_text_chunks(doc_list)

                # create vector store
                vectorstore = get_vectorstore(text_chunks)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(
                    vectorstore)


if __name__ == '__main__':
    main()