Spaces:
Runtime error
Runtime error
File size: 7,222 Bytes
47313bf 92aef63 47313bf 92aef63 184d696 92aef63 184d696 92aef63 184d696 92aef63 184d696 135cc46 92aef63 47313bf d464517 47313bf e39781d fd71696 47313bf f51a106 47313bf 51b4d27 47313bf 92aef63 47313bf b9a27c7 47313bf 51b4d27 b9a27c7 47313bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter,RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS, Chroma
from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub, LlamaCpp,CTransformers # For loading transformer models.
from langchain.document_loaders import PyPDFLoader,TextLoader, JSONLoader, CSVLoader
from tempfile import NamedTemporaryFile
def get_pdf_text(pdf_docs):
# text = ''
# pdf_file_ = open(pdf_docs,'rb')
# text = "example hofjin"
# for page in pdf_reader.pages:
# text += page.extract_text()
# return text
with NamedTemporaryFile() as temp_file:
temp_file.write(pdf_docs.getvalue())
temp_file.seek(0)
pdf_loader = PyPDFLoader(temp_file.name)
# print('pdf_loader = ', pdf_loader)
pdf_doc = pdf_loader.load()
# print('pdf_doc = ',pdf_doc)
return pdf_doc
def get_text_file(docs):
with NamedTemporaryFile() as temp_file:
temp_file.write(pdf_docs.getvalue())
temp_file.seek(0)
text_loader = TextLoader(temp_file.name)
text_doc = text_loader.load()
return text_doc
def get_csv_file(docs):
# import pandas as pd
# text = ''
# data = pd.read_csv(docs)
# for index, row in data.iterrows():
# item_name = row[0]
# row_text = item_name
# for col_name in data.columns[1:]:
# row_text += '{} is {} '.format(col_name, row[col_name])
# text += row_text + '\n'
# return text
with NamedTemporaryFile() as temp_file:
temp_file.write(docs.getvalue())
temp_file.seek(0)
text_loader = CSVLoader(temp_file.name)
text_doc = text_loader.load()
return text_doc
def get_json_file(docs):
with NamedTemporaryFile() as temp_file:
temp_file.write(docs.getvalue())
temp_file.seek(0)
json_loader = JSONLoader(temp_file.name,
jq_schema = '.messages[].content',
text_content= False)
json_doc = json_loader.load()
return json_doc
def get_hwp_file(docs):
pass
def get_docs_file(docs):
pass
def get_text_chunks(documents):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 1000,
chunk_overlap = 200,
length_function= len
)
# text_splitter = CharacterTextSplitter(
# separator="\n",
# chunk_size=10f00,
# chunk_overlap=200,
# length_function=len
# )
documents = text_splitter.split_documents(documents)
print('documents = ', documents)
return documents
def get_vectorstore(text_chunks):
# Load the desired embeddings model.
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2',
model_kwargs={'device': 'cpu'})
print('embeddings = ', embeddings)
# embeddings = OpenAIEmbeddings()sentence-transformers/all-MiniLM-L6-v2
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl",
# model_kwargs={'device':'cpu'})
vectorstore = FAISS.from_documents(text_chunks, embeddings)
# vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
model_path = 'llama-2-7b-chat.Q2_K.gguf'
# llm = ChatOpenAI()
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
config = {'max_new_tokens': 2048}
# llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q2_K.bin", model_type="llama", config=config)
llm = LlamaCpp(model_path=model_path,
n_ctx = 4086,
input={"n_ctx":2048,"temperature": 0.75, "max_length": 2000, "top_p": 1},
verbose=True, )
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
print('user_question => ', user_question)
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple PDFs",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
doc_list = []
for file in docs:
print('file - type : ', file.type)
if file.type == 'text/plain':
#file is .txt
doc_list.extend(get_text_file(file))
elif file.type in ['application/octet-stream', 'application/pdf']:
#file is .pdf
doc_list.extend(get_pdf_text(file))
elif file.type == 'text/csv':
#file is .csv
doc_list.extend(get_csv_file(file))
elif file.type == 'application/json':
# file is .json
doc_list.extend(get_json_file(file))
# get the text chunks
text_chunks = get_text_chunks(doc_list)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(
vectorstore)
if __name__ == '__main__':
main()
|