import numpy as np import pandas as pd from test_data import test_data from typing import List, Dict, Optional, Union class PatternLogic: def __init__(self): self.patterns = { 'channel': {'min_points': 4, 'confidence_threshold': 0.7}, 'triangle': {'min_points': 3, 'confidence_threshold': 0.75}, 'support': {'min_touches': 2, 'confidence_threshold': 0.8}, 'resistance': {'min_touches': 2, 'confidence_threshold': 0.8}, 'double_top': {'max_deviation': 0.02, 'confidence_threshold': 0.85}, 'double_bottom': {'max_deviation': 0.02, 'confidence_threshold': 0.85} } self.test_data = test_data def detect_channels(self, data: pd.DataFrame) -> Dict[str, Union[str, List[List[float]], float]]: days = len(data) base_price = 100 price_changes = np.random.normal(0.001, 0.02, days).cumsum() base_prices = base_price * (1 + price_changes) high_prices = base_prices * (1 + np.random.normal(0.01, 0.008, days)) low_prices = base_prices * (1 + np.random.normal(-0.01, 0.008, days)) timestamps = np.arange(days) upper_channel: List[List[float]] = [] lower_channel: List[List[float]] = [] for i in range(days): upper_channel.append([float(timestamps[i]), float(high_prices[i])]) lower_channel.append([float(timestamps[i]), float(low_prices[i])]) return { 'type': 'channel', 'upper': upper_channel, 'lower': lower_channel, 'confidence': 0.85 } def find_support_resistance(self, data: pd.DataFrame) -> List[Dict[str, Union[str, List[List[float]], float]]]: days = len(data) base_price = 100 price_changes = np.random.normal(0.001, 0.02, days).cumsum() close_prices = base_price * (1 + price_changes) * (1 + np.random.normal(0, 0.005, days)) timestamps = np.arange(days) levels: List[Dict] = [] for i in range(1, days-1): current_price = float(close_prices[i]) prev_price = float(close_prices[i-1]) next_price = float(close_prices[i+1]) if current_price > prev_price and current_price > next_price: levels.append({ 'type': 'resistance', 'coordinates': [[float(timestamps[i]), current_price]], 'confidence': 0.8 }) if current_price < prev_price and current_price < next_price: levels.append({ 'type': 'support', 'coordinates': [[float(timestamps[i]), current_price]], 'confidence': 0.8 }) return levels def detect_triangles(self, data: pd.DataFrame) -> Optional[Dict[str, Union[str, List[List[float]], float]]]: days = len(data) base_price = 100 price_changes = np.random.normal(0.001, 0.02, days).cumsum() base_prices = base_price * (1 + price_changes) high_prices = base_prices * (1 + np.random.normal(0.01, 0.008, days)) low_prices = base_prices * (1 + np.random.normal(-0.01, 0.008, days)) timestamps = np.arange(days) first_high = float(high_prices[0]) last_high = float(high_prices[-1]) first_low = float(low_prices[0]) last_low = float(low_prices[-1]) if last_high < first_high and last_low > first_low: return { 'type': 'triangle', 'coordinates': [ [float(timestamps[0]), first_high], [float(timestamps[-1]), last_high], [float(timestamps[0]), first_low], [float(timestamps[-1]), last_low] ], 'confidence': 0.75 } return None def validate_patterns(self, patterns: List[Dict]) -> List[Dict]: validated = [] for pattern in patterns: if pattern.get('confidence', 0) >= 0.8: validated.append(pattern) return validated