space02 / app.py
thefish1's picture
u
aab6dab
# import gradio as gr
# from huggingface_hub import InferenceClient
# import json
# import random
# import re
# from load_data import load_data
# from openai import OpenAI
# from transformers import AutoTokenizer, AutoModel
# import weaviate
# import os
# import torch
# from tqdm import tqdm
# import numpy as np
# import time
# # 设置缓存目录
# os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
# os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
# os.makedirs(os.environ['MPLCONFIGDIR'], exist_ok=True)
# os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
# # Weaviate 连接配置
# WEAVIATE_API_KEY = "Y7c8DRmcxZ4nP5IJLwkznIsK84l6EdwfXwcH"
# WEAVIATE_URL = "https://39nlafviqvard82k6y8btq.c0.asia-southeast1.gcp.weaviate.cloud"
# weaviate_auth_config = weaviate.AuthApiKey(api_key=WEAVIATE_API_KEY)
# weaviate_client = weaviate.Client(url=WEAVIATE_URL, auth_client_secret=weaviate_auth_config)
# # 预训练模型配置
# MODEL_NAME = "bert-base-chinese"
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = AutoModel.from_pretrained(MODEL_NAME)
# # OpenAI 客户端
# openai_client = None
# def initialize_openai_client(api_key):
# global openai_client
# openai_client = OpenAI(api_key=api_key)
# def extract_keywords(text):
# prompt = """
# 你是一个关键词提取机器人。提取用户输入中的关键词,特别是名词和形容词,关键词之间用空格分隔。例如:苹果 电脑 裤子 蓝色 裙。
# """
# messages = [
# {"role": "system", "content": prompt},
# {"role": "user", "content": f"从下面的文本中提取五个关键词,以空格分隔:{text}"}
# ]
# response = openai_client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=100,
# temperature=0.7,
# top_p=0.9,
# )
# keywords = response.choices[0].message.content.split(' ')
# return ','.join(keywords)
# def match_keywords(query_keywords, ad_keywords_list, triggered_keywords, current_turn, window_size, threshold):
# best_match_distance = 0
# best_match_index = -1
# for i, ad_keywords in enumerate(ad_keywords_list):
# match_count = sum(
# any(
# ad_keyword in keyword and
# (keyword not in triggered_keywords or current_turn - triggered_keywords[keyword] > window_size)
# ) for keyword in query_keywords
# )
# if match_count > best_match_distance:
# best_match_distance = match_count
# best_match_index = i
# if best_match_distance >= threshold:
# for keyword in query_keywords:
# if any(ad_keyword in keyword for ad_keyword in ad_keywords_list[best_match_index]):
# triggered_keywords[keyword] = current_turn
# return best_match_distance, best_match_index
# def encode_keywords_to_avg(keywords, model, tokenizer, device):
# embeddings = []
# for keyword in tqdm(keywords):
# inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
# inputs.to(device)
# with torch.no_grad():
# outputs = model(**inputs)
# embeddings.append(outputs.last_hidden_state.mean(dim=1))
# avg_embedding = sum(embeddings) / len(embeddings)
# return avg_embedding
# def get_response_from_db(keywords_dict, class_name):
# avg_vec = encode_keywords_to_avg(keywords_dict.keys(), model, tokenizer, device).numpy()
# response = (
# weaviate_client.query
# .get(class_name, ['keywords', 'summary'])
# .with_near_vector({'vector': avg_vec})
# .with_limit(1)
# .with_additional(['distance'])
# .do()
# )
# if class_name.capitalize() in response['data']['Get']:
# result = response['data']['Get'][class_name.capitalize()][0]
# return result['_additional']['distance'], result['summary'], result['keywords']
# else:
# return None, None, None
# def chatbot_response(message, max_tokens, temperature, top_p, window_size, threshold, user_weight, triggered_weight, api_key, state):
# initialize_openai_client(api_key)
# history = state.get('history', [])
# triggered_keywords = state.get('triggered_keywords', {})
# current_turn = len(history) + 1
# combined_user_message = " ".join([h[0] for h in history[-window_size:]] + [message])
# combined_assistant_message = " ".join([h[1] for h in history[-window_size:]])
# user_keywords = extract_keywords(combined_user_message).split(',')
# assistant_keywords = extract_keywords(combined_assistant_message).split(',')
# keywords_dict = {keyword: user_weight for keyword in user_keywords}
# for keyword in assistant_keywords:
# keywords_dict[keyword] = keywords_dict.get(keyword, 0) + 1
# for keyword in list(keywords_dict.keys()):
# if keyword in triggered_keywords and current_turn - triggered_keywords[keyword] < window_size:
# keywords_dict[keyword] = triggered_weight
# distance, ad_summary, ad_keywords = get_response_from_db(keywords_dict, class_name="ad_DB02")
# if distance and distance < threshold:
# ad_message = f"{message} <sep>品牌<sep>{ad_summary}"
# messages = [{"role": "system", "content": "你是一个热情的聊天机器人,应微妙地嵌入广告内容。"}]
# for msg in history:
# messages.extend([{"role": "user", "content": msg[0]}, {"role": "assistant", "content": msg[1]}])
# messages.append({"role": "user", "content": ad_message})
# for keyword in keywords_dict.keys():
# if any(ad_keyword in keyword for ad_keyword in ad_keywords.split(',')):
# triggered_keywords[keyword] = current_turn
# else:
# messages = [{"role": "system", "content": "你是一个热情的聊天机器人。"}]
# for msg in history:
# messages.extend([{"role": "user", "content": msg[0]}, {"role": "assistant", "content": msg[1]}])
# messages.append({"role": "user", "content": message})
# response = openai_client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=max_tokens,
# temperature=temperature,
# top_p=top_p,
# )
# history.append((message, response.choices[0].message.content))
# state['history'] = history
# state['triggered_keywords'] = triggered_keywords
# return response.choices[0].message.content, state
# # Gradio UI
# demo = gr.Interface(
# fn=chatbot_response,
# inputs=[
# gr.Textbox(label="Message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Window size"),
# gr.Slider(minimum=0.01, maximum=0.20, value=0.08, step=0.01, label="Distance threshold"),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Weight of keywords from users"),
# gr.Slider(minimum=0, maximum=2, value=0.5, step=0.5, label="Weight of triggered keywords"),
# gr.Textbox(label="API Key"),
# gr.State(value={'history': [], 'triggered_keywords': {}}) # Combined state
# ],
# outputs=[
# gr.Textbox(label="Response"),
# gr.State() # Return the updated state
# ]
# )
# if __name__ == "__main__":
# demo.launch(share=True)
import gradio as gr
from huggingface_hub import InferenceClient
import json
import random
import re
from load_data import load_data
from openai import OpenAI
from transformers import AutoTokenizer, AutoModel
import weaviate
import os
import torch
from tqdm import tqdm
import numpy as np
import time
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
# 设置缓存目录
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
os.makedirs(os.environ['MPLCONFIGDIR'], exist_ok=True)
os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
# Weaviate 连接配置
# 预训练模型配置
MODEL_NAME = "BAAI/bge-large-zh-v1.5"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME)
# OpenAI 客户端
openai_client = None
def initialize_openai_client(api_key):
global openai_client
openai_client = OpenAI(api_key=api_key)
def extract_keywords(text):
prompt = """
你的任务是从用户的输入中提取关键词,特别是名词和形容词,输出关键词之间用空格分隔。例如:苹果 电脑 裤子 蓝色 裙。
注意:
1.不要重复输出关键词,如果输入内容较短,你可以输出少于五个关键词,但至少输出两个
2.对于停用词不要进行输出,停用词如各类人称代词,连词等
3.关键词应该严格是名词和形容词,不要输出动词等其他词性
4.输出格式为关键词之间用空格分隔,例如:苹果 电脑 裤子 蓝色 裙
"""
messages = [
{"role": "system", "content": prompt},
{"role": "user", "content": f"从下面的文本中提取五个名词或形容词词性的关键词,以空格分隔:例子:她穿着蓝色的裙子,坐在电脑前,一边吃苹果一边看着裤子的购物网站。 输出:苹果 电脑 裤子 蓝色 裙\n\n 文本:{text}"}
]
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=messages,
max_tokens=100,
temperature=0.7,
top_p=0.9,
)
keywords = response.choices[0].message.content.split(' ')
return ','.join(keywords)
# def match_keywords(query_keywords, ad_keywords_list, triggered_keywords, current_turn, window_size, threshold):
# best_match_distance = 0
# best_match_index = -1
# for i, ad_keywords in enumerate(ad_keywords_list):
# match_count = sum(
# any(
# ad_keyword in keyword and
# (keyword not in triggered_keywords or current_turn - triggered_keywords[keyword] > window_size)
# ) for keyword in query_keywords
# )
# if match_count > best_match_distance:
# best_match_distance = match_count
# best_match_index = i
# if best_match_distance >= threshold:
# for keyword in query_keywords:
# if any(ad_keyword in keyword for ad_keyword in ad_keywords_list[best_match_index]):
# triggered_keywords[keyword] = current_turn
# return best_match_distance, best_match_index
def initialize_weaviate_client():
global weaviate_client
retry_strategy = Retry(
total=3, # 总共重试次数
status_forcelist=[429, 500, 502, 503, 504], # 需要重试的状态码
allowed_methods=["HEAD", "GET", "OPTIONS", "POST"], # 需要重试的方法
backoff_factor=1 # 重试间隔时间的倍数
)
adapter = HTTPAdapter(max_retries=retry_strategy)
http = requests.Session()
http.mount("https://", adapter)
http.mount("http://", adapter)
timeout = 5
WEAVIATE_API_KEY = "RhHxDEJwNWf14qQj982aaGOa0JepD7vtnsnq"
WEAVIATE_URL = "https://f5owzd1vqjilrbwg4zu7w.c0.us-west3.gcp.weaviate.cloud"
weaviate_auth_config = weaviate.AuthApiKey(api_key=WEAVIATE_API_KEY)
def create_client():
return weaviate.Client(
url=WEAVIATE_URL,
auth_client_secret=weaviate_auth_config,
timeout_config=(timeout, timeout)
)
try:
weaviate_client = create_client()
except Exception as e:
print(f"连接超时,重新连接")
weaviate_client = create_client()
def encode_keywords_to_avg(keywords, model, tokenizer, device):
embeddings = []
for keyword in tqdm(keywords):
inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
inputs.to(device)
with torch.no_grad():
outputs = model(**inputs)
embeddings.append(outputs.last_hidden_state.mean(dim=1))
avg_embedding = sum(embeddings) / len(embeddings)
return avg_embedding
def encode_keywords_to_list(keywords, model, tokenizer, device):
start_time = time.time()
embeddings = []
model.to(device)
for keyword in tqdm(keywords):
inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
inputs = {key: value.to(device) for key, value in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().tolist())
end_time=time.time()
print(f"Time taken for encoding: {end_time - start_time}")
return embeddings
def get_response_from_db(keywords_dict, class_name):
avg_vec = encode_keywords_to_avg(keywords_dict.keys(), model, tokenizer, device).numpy()
response = (
weaviate_client.query
.get(class_name, ['keywords', 'summary'])
.with_near_vector({'vector': avg_vec})
.with_limit(1)
.with_additional(['distance'])
.do()
)
if class_name.capitalize() in response['data']['Get']:
result = response['data']['Get'][class_name.capitalize()][0]
return result['_additional']['distance'], result['summary'], result['keywords']
else:
return None, None, None
def get_candidates_from_db(keywords_dict, class_name,limit=3):
embeddings= encode_keywords_to_list(keywords_dict.keys(), model, tokenizer, device)
candidate_list=[]
for embedding in embeddings:
response = (
weaviate_client.query
.get(class_name, ['group_id','keyword_list','keyword', 'summary'])
.with_near_vector({'vector': embedding})
.with_limit(limit)
.with_additional(['distance'])
.do()
)
class_name=class_name[0].upper()+class_name[1:]
if class_name in response['data']['Get']:
results = response['data']['Get'][class_name]
for result in results:
candidate_list.append({
'distance': result['_additional']['distance'],
'group_id': result['group_id'],
'keyword_list':result['keyword_list'],
'summary': result['summary'],
'keyword': result['keyword']
})
return candidate_list
triggered_keywords = {}
# def keyword_match(keywords_dict,candidates):
# for candidate in candidates:
# keywords=candidate['keywords'].split('*')
# candidate_keywords_list=[keyword.split('#')[1] for keyword in keywords if '#' in keyword]
# # print(keywords_dict.keys())
# print(f"nowdebug candidatekeywordslist{candidate_keywords_list}")
# for keyword in keywords_dict.keys():
# if any(candidate_keyword in keyword for candidate_keyword in candidate_keywords_list):
# # triggered_keywords[keyword]=True
# print(f"candidate_keyword{candidate_keywords_list},,,,,,,keyword{keyword}")
# return candidate['distance'],candidate['summary'],candidate['keywords']
# return 1000,None,None
def first_keyword_match(keywords_dict,keyword_match_threshold=2):
if not keywords_dict:
return None,None
data=load_data("train_2000_modified.json",2000)
keywords=[dt['content'] for dt in data]
max_matches=0
index=0
for i, lst in enumerate(keywords):
list=lst.split(',')
matches=sum(any(ad_keyword in keyword for keyword in keywords_dict.keys()) for ad_keyword in list)
if matches>max_matches:
max_matches=matches
index=i
if max_matches<=keyword_match_threshold:
return None,None
return data[index]['summary'],keywords[index]
def chatbot_response(message, history, window_size, threshold, score_threshold,user_weight, triggered_weight,candidate_length,api_key):
#初始化openai client
initialize_openai_client(api_key)
initialize_weaviate_client()
#更新轮次,获取窗口历史
current_turn = len(history) + 1
combined_user_message = message
combined_assistant_message = ""
for i in range(1, window_size + 1):
if len(history) >= i:
if i % 2 == 1: # 奇数轮次,添加 assistant 的内容
combined_assistant_message = " ".join([history[-i][1], combined_assistant_message]).strip()
else: # 偶数轮次,添加 user 的内容
combined_user_message = " ".join([history[-i][0], combined_user_message]).strip()
#提取关键词
user_keywords = extract_keywords(combined_user_message).split(',')
#获取关键词字典
keywords_dict = {keyword: user_weight for keyword in user_keywords}
#根据上下文轮数更新关键词列表长度
max_size = 6 * window_size
if len(keywords_dict) > max_size:
keywords_dict = dict(list(keywords_dict.items())[-max_size:])
if combined_assistant_message:
assistant_keywords = extract_keywords(combined_assistant_message).split(',')
for keyword in assistant_keywords:
keywords_dict[keyword] = keywords_dict.get(keyword, 0) + 1
for keyword in list(keywords_dict.keys()):
if keyword in triggered_keywords and current_turn - triggered_keywords[keyword] < window_size:
keywords_dict[keyword] = triggered_weight
start_time = time.time()
ad_summary,ad_keywords=first_keyword_match(keywords_dict)
#关键词匹配命中
end_time = time.time()
print(f"Time taken for first keyword match: {end_time - start_time}")
if ad_summary:
brands=['腾讯','阿里巴巴','百度','京东','华为','小米','苹果','微软','谷歌','亚马逊']
brand=random.choice(brands)
ad_message = f"{message} <sep>品牌{brand}<sep>{ad_summary}"
print(f"ad_sumamry: {ad_summary}")
messages = [{"role": "system", "content": "请你将生活化、原汁原味的语言提炼出来,具有亲切感,类似于拉家常的方式推销商品,具有融洽的氛围和口语化的语言。请直接输出融合的对话文本。"}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": ad_message})
for keyword in keywords_dict.keys():
if any(ad_keyword in keyword for ad_keyword in ad_keywords.split(',')):
triggered_keywords[keyword] = current_turn
#关键词不中
else:
start_time=time.time()
# distance, ad_summary, ad_keywords = get_response_from_db(keywords_dict, class_name="ad_DB02")
#数据库索引,数据库关键词平均方式
candidates=get_candidates_from_db(keywords_dict, class_name="Ad_DB10",limit=candidate_length)
candidates.sort(key=lambda x:x['distance'])
candidates=[candidate for candidate in candidates if candidate['distance']<threshold]
print("----------------------------------------------------------------------")
print(f"keywords:{keywords_dict.keys()}")
print(f"candidates:{candidates[:5]}")
#此时的候选集中所有元素都至少有一个关键词命中了
#筛选后的候选集进行投票,选出被投票最多的一条
#投中第一个元素加双倍权重
group_scores={}
if(candidates):
for candidate in candidates:
group_id=candidate['group_id']
keyword = candidate['keyword']
keyword_list = candidate['keyword_list'].split(',')
# 检查 keyword 是否是 keyword_list 中的第一个元素
if keyword in user_keywords:
if keyword == keyword_list[0]:
score = 6
else:
score = 2
else:
if keyword == keyword_list[0]:
score = 3
else:
score = 1
if keyword in triggered_keywords and current_turn - triggered_keywords[keyword] < window_size:
if(keyword == keyword_list[0]):
score = triggered_weight*3
else:
keywords_dict[keyword] = triggered_weight
# 更新 group_scores 字典中的分数
if group_id in group_scores:
group_scores[group_id] += score
else:
group_scores[group_id] = score
distance=1000
if group_scores:
max_group_id = max(group_scores, key=group_scores.get)
max_score = group_scores[max_group_id]
if(max_score>=score_threshold):
distance,ad_summary,ad_keywords=[(candidate['distance'],candidate['summary'],candidate['keyword_list']) for candidate in candidates if candidate['group_id']==max_group_id][0]
#触发->标记触发词
for keyword in keywords_dict.keys():
if any(ad_keyword in keyword for ad_keyword in ad_keywords.split(',')):
triggered_keywords[keyword] = current_turn
print("ad_keywords: ", ad_keywords)
if group_scores:
sorted_group_scores = sorted(group_scores.items(), key=lambda item: item[1], reverse=True)
print(f"group_scores: {sorted_group_scores}")
end_time=time.time()
print(f"Time taken for vecDB: {end_time - start_time}")
if distance < 1000:
pass
else:
messages = [{"role": "system", "content": "你是一个热情的聊天机器人。"}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
if ad_summary:
raw_initial_response=openai_client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": message}],
)
initial_response=raw_initial_response.choices[0].message.content
brands=['腾讯','阿里巴巴','百度','京东','华为','小米','苹果','微软','谷歌','亚马逊']
brand=random.choice(brands)
fusion_message=f"用户输入(上下文):\n{message}\n\n原始回复:\n{initial_response}\n\n广告信息:\n来自{brand}品牌:{ad_summary}"
with open("system_prompt.txt","r") as f:
system_prompt=f.read()
print(f"fusion_message: {fusion_message} ")
fusion_messages=[{"role":"system","content":system_prompt}]
# fusion_messages=[{"role":"system","content":"请在原回复中巧妙地插入带有广告品牌的广告描述,使得插入后的回复尽可能与前后文都连贯,插入位置和连接方式请根据上下文决定,注意:请只输出插入广告后的回复,不要输出任何其他的信息"}]
fusion_messages.append({"role":"user","content":fusion_message})
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=fusion_messages
)
else:
messages = [{"role": "system", "content": "你是一个热情的聊天机器人。你的所有回复应该是简短的一段式回答,不要过于冗长。"}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=messages,
)
print(f"triggered_keywords: {triggered_keywords}")
return response.choices[0].message.content
# Gradio UI
demo = gr.ChatInterface(
chatbot_response,
additional_inputs=[
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Window size"),
gr.Slider(minimum=0.01, maximum=0.3, value=0.25, step=0.01, label="Distance threshold"),
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Score threshold"),
gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Weight of keywords from users"),
gr.Slider(minimum=0, maximum=2, value=0.5, step=0.5, label="Weight of triggered keywords"),
gr.Slider(minimum=0, maximum=100, value=30, step=5, label="Number of candidates"),
gr.Textbox(label="API Key"),
],
)
if __name__ == "__main__":
demo.launch(share=True)
print("happyhappyhappy")
# import gradio as gr
# from huggingface_hub import InferenceClient
# import json
# import random
# import re
# from load_data import load_data
# from openai import OpenAI
# from transformers import AutoTokenizer, AutoModel
# import weaviate
# import os
# import subprocess
# import torch
# from tqdm import tqdm
# import numpy as np
# import time
# # 设置 Matplotlib 的缓存目录
# os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
# # 设置 Hugging Face Transformers 的缓存目录
# os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
# # 确保这些目录存在
# os.makedirs(os.environ['MPLCONFIGDIR'], exist_ok=True)
# os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
# auth_config = weaviate.AuthApiKey(api_key="Y7c8DRmcxZ4nP5IJLwkznIsK84l6EdwfXwcH")
# URL = "https://39nlafviqvard82k6y8btq.c0.asia-southeast1.gcp.weaviate.cloud"
# # Connect to a WCS instance
# db_client = weaviate.Client(
# url=URL,
# auth_client_secret=auth_config
# )
# class_name="ad_DB02"
# device = torch.device(device='cuda' if torch.cuda.is_available() else 'cpu')
# tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
# model = AutoModel.from_pretrained("bert-base-chinese")
# global_api_key = None
# client = None
# def initialize_clients(api_key):
# global client
# client = OpenAI(api_key=api_key)
# def get_keywords(message):
# system_message = """
# # 角色
# 你是一个关键词提取机器人
# # 指令
# 你的目标是从用户的输入中提取关键词,这些关键词应该尽可能是购买意图相关的。关键词中应该尽可能注意那些名词和形容词
# # 输出格式
# 你应该直接输出关键词,关键词之间用空格分隔。例如:苹果 电脑 裤子 蓝色 裙
# # 注意:如果输入文本过短可以重复输出关键词,例如对输入“你好”可以输出:你好 你好 你好 你好 你好
# """
# messages = [{"role": "system", "content": system_message}]
# messages.append({"role": "user", "content": f"从下面的文本中给我提取五个关键词,只输出这五个关键词,以空格分隔{message}"})
# response = client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=100,
# temperature=0.7,
# top_p=0.9,
# )
# keywords = response.choices[0].message.content.split(' ')
# return ','.join(keywords)
# #字符串匹配模块
# def keyword_match(query_keywords_dict, ad_keywords_lists, triggered_keywords, current_turn, window_size,distance_threshold):
# distance = 0
# most_matching_list = None
# index = 0
# # query_keywords = query_keywords.split(',')
# # query_keywords = [keyword for keyword in query_keywords if keyword]
# #匹配模块
# query_keywords= list(query_keywords_dict.keys())
# for i, lst in enumerate(ad_keywords_lists):
# lst = lst.split(',')
# matches = sum(
# any(
# ad_keyword in keyword and
# (
# keyword not in triggered_keywords or
# triggered_keywords.get(keyword) is None or
# current_turn - triggered_keywords.get(keyword, 0) > window_size
# ) * query_keywords_dict.get(keyword, 1) #计数乘以权重
# for keyword in query_keywords
# )
# for ad_keyword in lst
# )
# if matches > distance:
# distance = matches
# most_matching_list = lst
# index = i
# #更新对distance 有贡献的关键词
# if distance >= distance_threshold:
# for keyword in query_keywords:
# if any(
# ad_keyword in keyword for ad_keyword in most_matching_list
# ):
# triggered_keywords[keyword] = current_turn
# return distance, index
# def encode_list_to_avg(keywords_list_list, model, tokenizer, device):
# if torch.cuda.is_available():
# print('Using GPU')
# print(device)
# else:
# print('Using CPU')
# print(device)
# avg_embeddings = []
# for keywords in tqdm(keywords_list_list):
# keywords_lst=[]
# # keywords.split(',')
# for keyword in keywords:
# inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
# inputs.to(device)
# with torch.no_grad():
# outputs = model(**inputs)
# embeddings = outputs.last_hidden_state.mean(dim=1)
# keywords_lst.append(embeddings)
# avg_embedding = sum(keywords_lst) / len(keywords_lst)
# avg_embeddings.append(avg_embedding)
# return avg_embeddings
# def encode_to_avg(keywords_dict, model, tokenizer, device):
# if torch.cuda.is_available():
# print('Using GPU')
# print(device)
# else:
# print('Using CPU')
# print(device)
# keyword_embeddings=[]
# for keyword, weight in keywords_dict.items():
# inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
# inputs.to(device)
# with torch.no_grad():
# outputs = model(**inputs)
# embedding = outputs.last_hidden_state.mean(dim=1)
# keyword_embedding=embedding * weight
# keyword_embeddings.append(keyword_embedding * weight)
# avg_embedding = sum(keyword_embeddings) / sum(keywords_dict.values())
# return avg_embedding.tolist()
# def fetch_response_from_db(query_keywords_dict,class_name):
# start_time = time.time()
# avg_vec=np.array(encode_to_avg(query_keywords_dict, model, tokenizer, device))
# end_time = time.time()
# print(f"Time taken to encode to avg: {end_time - start_time}")
# nearVector = {
# 'vector': avg_vec
# }
# start_time = time.time()
# response = (
# db_client.query
# .get(class_name, ['keywords', 'summary'])
# .with_near_vector(nearVector)
# .with_limit(1)
# .with_additional(['distance'])
# .do()
# )
# end_time = time.time()
# print(f"Time taken to search in DB: {end_time - start_time}")
# print(response)
# class_name=class_name[0].upper()+class_name[1:]
# if class_name in response['data']['Get']:
# results = response['data']['Get'][class_name]
# print(results[0]['keywords'])
# return results[0]['_additional']['distance'],results[0]['summary'], results[0]['keywords']
# else:
# print(f"Class name {class_name} not found in response")
# return None
# def wrapper(message, history, max_tokens, temperature, top_p, window_size, distance_threshold, weight_keywords_users, weight_keywords_triggered, api_key):
# initialize_clients(api_key)
# return respond(message, history, max_tokens, temperature, top_p, window_size, distance_threshold, weight_keywords_users, weight_keywords_triggered)
# #触发词及触发回合字典
# triggered_keywords = {}
# def respond(
# message,
# history: list[tuple[str, str]],
# max_tokens,
# temperature,
# top_p,
# window_size,
# distance_threshold,
# weight_keywords_users,
# weight_keywords_triggered,
# ):
# system_message_with_ad = """
# # 角色
# 你是一个热情的聊天机器人
# # 指令
# 你的目标是以一种微妙的方式将给定的广告内容嵌入对话中。插入广告时应尽量自然,避免突兀。优先正常回答用户问题,然后逐步以推荐方式引入广告内容。
# 注意要在商品的描述前面加上是来自哪个品牌的广告。
# 注意在推荐中不要脑补用户的身份,只是进行简单推荐。
# 注意要热情但是语气只要适度热情
# # 输入格式
# 用户查询后跟随广告品牌,用<sep>分隔,广告品牌后跟随广告描述,再用<sep>分隔。
# 例如:我想买一条阔腿裤 <sep> 腾讯 <sep> 宽松的阔腿裤这两年真的吸粉不少,明星时尚达人的心头爱。毕竟好穿时尚,谁都能穿出腿长2米的效果宽松的裤腿,当然是遮肉小能手啊。上身随性自然不拘束,面料亲肤舒适贴身体验感棒棒哒。系带部分增加设计看点,还让单品的设计感更强。腿部线条若隐若现的,性感撩人。颜色敲温柔的,与裤子本身所呈现的风格有点反差萌。
# 注意: 当没有<sep>时,正常回复用户,不插入广告。
# # 输出格式
# 始终使用中文,只输出聊天内容,不输出任何自我分析的信息
# """
# system_message_without_ad = """
# 你是一个热情的聊天机器人
# """
# print(f"triggered_keywords{triggered_keywords}")
# # 更新当前轮次
# current_turn = len(history) + 1
# print(f"\ncurrent_turn: {current_turn}\n")
# # 检查历史记录的长度
# if len(history) >= window_size:
# combined_message_user = " ".join([h[0] for h in history[-window_size:] if h[0]] + [message])
# combined_message_assistant=" ".join(h[1] for h in history[-window_size:] if h[1])
# else:
# combined_message_user = message
# combined_message_assistant = ""
# start_time = time.time()
# key_words_users=get_keywords(combined_message_user).split(',')
# key_words_assistant=get_keywords(combined_message_assistant).split(',')
# end_time = time.time()
# print(f"Time taken to get keywords: {end_time - start_time}")
# print(f"Initial keywords_users: {key_words_users}")
# print(f"Initial keywords_assistant: {key_words_assistant}")
# keywords_dict = {}
# added_keywords = set()
# for keywords in key_words_users:
# if keywords not in added_keywords:
# if keywords in keywords_dict:
# keywords_dict[keywords] += weight_keywords_users
# else:
# keywords_dict[keywords] = weight_keywords_users
# added_keywords.add(keywords)
# for keywords in key_words_assistant:
# if keywords not in added_keywords:
# if keywords in keywords_dict:
# keywords_dict[keywords] += 1
# else:
# keywords_dict[keywords] = 1
# added_keywords.add(keywords)
# #窗口内触发过的关键词权重下调为0.5
# for keyword in list(keywords_dict.keys()):
# if keyword in triggered_keywords:
# if current_turn - triggered_keywords[keyword] < window_size:
# keywords_dict[keyword] = weight_keywords_triggered
# query_keywords = list(keywords_dict.keys())
# print(keywords_dict)
# start_time = time.time()
# distance,top_keywords_list,top_summary = fetch_response_from_db(keywords_dict,class_name)
# end_time = time.time()
# print(f"Time taken to fetch response from db: {end_time - start_time}")
# print(f"distance: {distance}")
# if distance<distance_threshold:
# ad =top_summary
# messages = [{"role": "system", "content": system_message_with_ad}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# brands = ['腾讯', '百度', '京东', '华为', '小米', '苹果', '微软', '谷歌', '亚马逊']
# brand = random.choice(brands)
# messages.append({"role": "user", "content": f"{message} <sep>{brand}的 <sep> {ad}"})
# #更新触发词
# for keyword in query_keywords:
# if any(
# ad_keyword in keyword for ad_keyword in top_keywords_list
# ):
# triggered_keywords[keyword] = current_turn
# else:
# messages = [{"role": "system", "content": system_message_without_ad}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# start_time = time.time()
# response = client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=max_tokens,
# temperature=temperature,
# top_p=top_p,
# )
# end_time = time.time()
# print(f"Time taken to get response from GPT: {end_time - start_time}")
# return response.choices[0].message.content
# # def chat_interface(message, history, max_tokens, temperature, top_p, window_size, distance_threshold):
# # global triggered_keywords
# # response, triggered_keywords = respond(
# # message,
# # history,
# # max_tokens,
# # temperature,
# # top_p,
# # window_size,
# # distance_threshold,
# # triggered_keywords
# # )
# # return response, history + [(message, response)]
# demo = gr.ChatInterface(
# wrapper,
# additional_inputs=[
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Window size"),
# gr.Slider(minimum=0.01, maximum=0.20, value=0.08, step=0.01, label="Distance threshold"),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Weight of keywords from users"),
# gr.Slider(minimum=0, maximum=2, value=0.5, step=0.5, label="Weight of triggered keywords"),
# gr.Textbox(label="api_key"),
# ],
# )
# if __name__ == "__main__":
# demo.launch(share=True)
# import gradio as gr
# from huggingface_hub import InferenceClient
# import json
# import random
# import re
# from load_data import load_data
# from openai import OpenAI
# from transformers import AutoTokenizer, AutoModel
# import weaviate
# import os
# import subprocess
# import torch
# from tqdm import tqdm
# import numpy as np
# # 设置 Matplotlib 和 Hugging Face Transformers 的缓存目录
# os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
# os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
# os.makedirs(os.environ['MPLCONFIGDIR'], exist_ok=True)
# os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
# auth_config = weaviate.AuthApiKey(api_key="Y7c8DRmcxZ4nP5IJLwkznIsK84l6EdwfXwcH")
# URL = "https://39nlafviqvard82k6y8btq.c0.asia-southeast1.gcp.weaviate.cloud"
# # Connect to a WCS instance
# db_client = weaviate.Client(
# url=URL,
# auth_client_secret=auth_config
# )
# class_name = "ad_DB02"
# device = torch.device(device='cuda' if torch.cuda.is_available() else 'cpu')
# tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
# model = AutoModel.from_pretrained("bert-base-chinese")
# global_api_key = None
# client = None
# def initialize_clients(api_key):
# global client
# client = OpenAI(api_key=api_key)
# def get_keywords(message):
# system_message = """
# # 角色
# 你是一个关键词提取机器人
# # 指令
# 你的目标是从用户的输入中提取关键词,这些关键词应该尽可能是购买意图相关的。关键词中应该尽可能注意那些名词和形容词
# # 输出格式
# 你应该直接输出关键词,关键词之间用空格分隔。例如:苹果 电脑 裤子 蓝色 裙
# # 注意:如果输入文本过短可以重复输出关键词,例如对输入“你好”可以输出:你好 你好 你好 你好 你好
# """
# messages = [{"role": "system", "content": system_message}]
# messages.append({"role": "user", "content": f"从下面的文本中给我提取五个关键词,只输出这五个关键词,以空格分隔{message}"})
# response = client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=100,
# temperature=0.7,
# top_p=0.9,
# )
# keywords = response.choices[0].message.content.split(' ')
# return ','.join(keywords)
# def fetch_response_from_db(query_keywords_dict, class_name):
# avg_vec = np.array(encode_to_avg(query_keywords_dict, model, tokenizer, device))
# nearVector = {'vector': avg_vec}
# response = (
# db_client.query
# .get(class_name, ['keywords', 'summary'])
# .with_near_vector(nearVector)
# .with_limit(1)
# .with_additional(['distance'])
# .do()
# )
# class_name = class_name[0].upper() + class_name[1:]
# if class_name in response['data']['Get']:
# results = response['data']['Get'][class_name]
# return results[0]['_additional']['distance'], results[0]['summary'], results[0]['keywords']
# else:
# print(f"Class name {class_name} not found in response")
# return None
# def encode_to_avg(keywords_dict, model, tokenizer, device):
# if torch.cuda.is_available():
# print('Using GPU')
# print(device)
# else:
# print('Using CPU')
# print(device)
# keyword_embeddings = []
# for keyword, weight in keywords_dict.items():
# inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
# inputs.to(device)
# with torch.no_grad():
# outputs = model(**inputs)
# embedding = outputs.last_hidden_state.mean(dim=1)
# keyword_embedding = embedding * weight
# keyword_embeddings.append(keyword_embedding)
# avg_embedding = sum(keyword_embeddings) / sum(keywords_dict.values())
# return avg_embedding.tolist()
# def wrapper(message, history, max_tokens, temperature, top_p, window_size, distance_threshold, weight_keywords_users, weight_keywords_triggered, api_key, state):
# initialize_clients(api_key)
# return respond(message, history, max_tokens, temperature, top_p, window_size, distance_threshold, weight_keywords_users, weight_keywords_triggered, state)
# def respond(
# message,
# history,
# max_tokens,
# temperature,
# top_p,
# window_size,
# distance_threshold,
# weight_keywords_users,
# weight_keywords_triggered,
# state
# ):
# triggered_keywords = state.get('triggered_keywords', {})
# current_turn = len(history) + 1
# if len(history) >= window_size:
# combined_message_user = " ".join([h[0] for h in history[-window_size:] if h[0]] + [message])
# combined_message_assistant = " ".join(h[1] for h in history[-window_size:] if h[1])
# else:
# combined_message_user = message
# combined_message_assistant = ""
# key_words_users = get_keywords(combined_message_user).split(',')
# key_words_assistant = get_keywords(combined_message_assistant).split(',')
# keywords_dict = {}
# for keyword in key_words_users:
# if keyword in keywords_dict:
# keywords_dict[keyword] += weight_keywords_users
# else:
# keywords_dict[keyword] = weight_keywords_users
# for keyword in key_words_assistant:
# if keyword in keywords_dict:
# keywords_dict[keyword] += 1
# else:
# keywords_dict[keyword] = 1
# for keyword in list(keywords_dict.keys()):
# if keyword in triggered_keywords:
# if current_turn - triggered_keywords[keyword] < window_size:
# keywords_dict[keyword] = weight_keywords_triggered
# query_keywords = list(keywords_dict.keys())
# distance, top_keywords_list, top_summary = fetch_response_from_db(keywords_dict, class_name)
# if distance < distance_threshold:
# ad = top_summary
# messages = [{"role": "system", "content": system_message_with_ad}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# brands = ['腾讯', '百度', '京东', '华为', '小米', '苹果', '微软', '谷歌', '亚马逊']
# brand = random.choice(brands)
# messages.append({"role": "user", "content": f"{message} <sep>{brand}的 <sep> {ad}"})
# for keyword in query_keywords:
# if any(ad_keyword in keyword for ad_keyword in top_keywords_list):
# triggered_keywords[keyword] = current_turn
# else:
# messages = [{"role": "system", "content": system_message_without_ad}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=max_tokens,
# temperature=temperature,
# top_p=top_p,
# )
# state['triggered_keywords'] = triggered_keywords
# return response.choices[0].message.content, state
# demo = gr.ChatInterface(
# wrapper,
# additional_inputs=[
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Window size"),
# gr.Slider(minimum=0.01, maximum=0.20, value=0.08, step=0.01, label="Distance threshold"),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Weight of keywords from users"),
# gr.Slider(minimum=0, maximum=2, value=0.5, step=0.5, label="Weight of triggered keywords"),
# gr.Textbox(label="api_key"),
# gr.State(value="state")
# ],
# )
# if __name__ == "__main__":
# demo.launch(share=True)