tensorgirl commited on
Commit
b34f894
·
verified ·
1 Parent(s): e819b39

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -45,7 +45,7 @@ def Hindi(audio):
45
  transcriber = pipeline("automatic-speech-recognition", model="theainerd/Wav2Vec2-large-xlsr-hindi")
46
  sr, y = audio
47
  y = y.astype(np.float32)
48
- y = np.max(np.abs(y))
49
 
50
  text = transcriber({"sampling_rate":sr, "raw":y})["text"]
51
 
@@ -57,7 +57,7 @@ def Telegu(audio):
57
  transcriber = pipeline("automatic-speech-recognition", model="anuragshas/wav2vec2-large-xlsr-53-telugu")
58
  sr, y = audio
59
  y = y.astype(np.float32)
60
- y = np.max(np.abs(y))
61
 
62
  text = transcriber({"sampling_rate":sr, "raw":y})["text"]
63
 
@@ -68,7 +68,7 @@ def Tamil(audio):
68
  transcriber = pipeline("automatic-speech-recognition", model="Harveenchadha/vakyansh-wav2vec2-tamil-tam-250")
69
  sr, y = audio
70
  y = y.astype(np.float32)
71
- y = np.max(np.abs(y))
72
 
73
  text = transcriber({"sampling_rate":sr, "raw":y})["text"]
74
 
@@ -79,7 +79,7 @@ def Kannada(audio):
79
  transcriber = pipeline("automatic-speech-recognition", model="vasista22/whisper-kannada-medium")
80
  sr, y = audio
81
  y = y.astype(np.float32)
82
- y = np.max(np.abs(y))
83
 
84
  text = transcriber({"sampling_rate":sr, "raw":y})["text"]
85
 
@@ -142,8 +142,7 @@ demo = gr.Interface(
142
  )],
143
  "text",
144
  title = "Farmers-Helper-Bot",
145
- description = "Ask your queries in your regional Language",
146
- theme=gr.themes.Soft()
147
  )
148
 
149
  demo.launch(share=True)
 
45
  transcriber = pipeline("automatic-speech-recognition", model="theainerd/Wav2Vec2-large-xlsr-hindi")
46
  sr, y = audio
47
  y = y.astype(np.float32)
48
+ y /= np.max(np.abs(y))
49
 
50
  text = transcriber({"sampling_rate":sr, "raw":y})["text"]
51
 
 
57
  transcriber = pipeline("automatic-speech-recognition", model="anuragshas/wav2vec2-large-xlsr-53-telugu")
58
  sr, y = audio
59
  y = y.astype(np.float32)
60
+ y /= np.max(np.abs(y))
61
 
62
  text = transcriber({"sampling_rate":sr, "raw":y})["text"]
63
 
 
68
  transcriber = pipeline("automatic-speech-recognition", model="Harveenchadha/vakyansh-wav2vec2-tamil-tam-250")
69
  sr, y = audio
70
  y = y.astype(np.float32)
71
+ y /= np.max(np.abs(y))
72
 
73
  text = transcriber({"sampling_rate":sr, "raw":y})["text"]
74
 
 
79
  transcriber = pipeline("automatic-speech-recognition", model="vasista22/whisper-kannada-medium")
80
  sr, y = audio
81
  y = y.astype(np.float32)
82
+ y /= np.max(np.abs(y))
83
 
84
  text = transcriber({"sampling_rate":sr, "raw":y})["text"]
85
 
 
142
  )],
143
  "text",
144
  title = "Farmers-Helper-Bot",
145
+ description = "Ask your queries in your regional Language"
 
146
  )
147
 
148
  demo.launch(share=True)