File size: 5,107 Bytes
916d528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import numpy as np
import os.path as osp
from PIL import Image
from tqdm import tqdm
import imageio
import csv


def depth_read(filename):
    # loads depth map D from png file
    # and returns it as a numpy array

    depth_png = np.asarray(Image.open(filename))
    # make sure we have a proper 16bit depth map here.. not 8bit!
    assert np.max(depth_png) > 255

    depth = depth_png.astype(np.float64) / 5000.0
    depth[depth_png == 0] = -1.0
    return depth


def extract_bonn(
    root,
    depth_root,
    sample_len=-1,
    csv_save_path="",
    datatset_name="",
    saved_rgb_dir="",
    saved_disp_dir="",
    start_frame=0,
    end_frame=110,
):
    scenes_names = os.listdir(depth_root)
    all_samples = []
    for i, seq_name in enumerate(tqdm(scenes_names)):
        # load all images
        all_img_names = os.listdir(osp.join(depth_root, seq_name, "rgb"))
        all_img_names = [x for x in all_img_names if x.endswith(".png")]
        print(f"sequence frame number: {len(all_img_names)}")

        # for not zero padding image name
        all_img_names.sort()
        all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
        all_img_names = all_img_names[start_frame:end_frame]

        all_depth_names = os.listdir(osp.join(depth_root, seq_name, "depth"))
        all_depth_names = [x for x in all_depth_names if x.endswith(".png")]
        print(f"sequence depth number: {len(all_depth_names)}")

        # for not zero padding image name
        all_depth_names.sort()
        all_depth_names = sorted(
            all_depth_names, key=lambda x: int(x.split(".")[0][-4:])
        )
        all_depth_names = all_depth_names[start_frame:end_frame]

        seq_len = len(all_img_names)
        step = sample_len if sample_len > 0 else seq_len

        for ref_idx in range(0, seq_len, step):
            print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")

            video_imgs = []
            video_depths = []

            if (ref_idx + step) <= seq_len:
                ref_e = ref_idx + step
            else:
                continue

            # for idx in range(ref_idx, ref_idx + step):
            for idx in range(ref_idx, ref_e):
                im_path = osp.join(root, seq_name, "rgb", all_img_names[idx])
                depth_path = osp.join(
                    depth_root, seq_name, "depth", all_depth_names[idx]
                )

                depth = depth_read(depth_path)
                disp = depth

                video_depths.append(disp)
                video_imgs.append(np.array(Image.open(im_path)))

            disp_video = np.array(video_depths)[:, None]  # [:, 0:1, :, :, 0]
            img_video = np.array(video_imgs)[..., 0:3]  # [:, 0, :, :, 0:3]

            print(disp_video.max(), disp_video.min())

            def even_or_odd(num):
                if num % 2 == 0:
                    return num
                else:
                    return num - 1

            # print(disp_video.shape)
            # print(img_video.shape)
            height = disp_video.shape[-2]
            width = disp_video.shape[-1]
            height = even_or_odd(height)
            width = even_or_odd(width)
            disp_video = disp_video[:, :, 0:height, 0:width]
            img_video = img_video[:, 0:height, 0:width]

            data_root = saved_rgb_dir + datatset_name
            disp_root = saved_disp_dir + datatset_name
            os.makedirs(data_root, exist_ok=True)
            os.makedirs(disp_root, exist_ok=True)

            img_video_dir = data_root
            disp_video_dir = disp_root

            img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
            disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")

            imageio.mimsave(
                img_video_path, img_video, fps=15, quality=9, macro_block_size=1
            )
            np.savez(disp_video_path, disparity=disp_video)

            sample = {}
            sample["filepath_left"] = os.path.join(
                f"{datatset_name}/{seq_name}_rgb_left.mp4"
            )  # img_video_path
            sample["filepath_disparity"] = os.path.join(
                f"{datatset_name}/{seq_name}_disparity.npz"
            )  # disp_video_path

            all_samples.append(sample)

    # save csv file

    filename_ = csv_save_path
    os.makedirs(os.path.dirname(filename_), exist_ok=True)
    fields = ["filepath_left", "filepath_disparity"]
    with open(filename_, "w") as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=fields)
        writer.writeheader()
        writer.writerows(all_samples)

    print(f"{filename_} has been saved.")


if __name__ == "__main__":
    extract_bonn(
        root="path/to/Bonn-RGBD",
        depth_root="path/to/Bonn-RGBD",
        saved_rgb_dir="./benchmark/datasets/",
        saved_disp_dir="./benchmark/datasets/",
        csv_save_path=f"./benchmark/datasets/bonn.csv",
        sample_len=-1,
        datatset_name="bonn",
        start_frame=30,
        end_frame=140,
    )