File size: 4,904 Bytes
0dda2a1
 
 
6c7d766
0dda2a1
 
c4a2d1f
0dda2a1
 
6c7d766
0dda2a1
 
 
 
 
 
 
 
 
 
 
cfd2b5e
064943c
0dda2a1
 
 
 
cfd2b5e
064943c
0dda2a1
 
011040f
 
6c7d766
011040f
064943c
0dda2a1
 
6c7d766
40d15f0
cfd2b5e
 
 
 
 
6c7d766
 
e6ccf57
6c7d766
 
1a55708
6c7d766
 
 
 
 
 
 
 
40d15f0
6c7d766
 
e6ccf57
6c7d766
 
1a55708
6c7d766
 
 
 
 
 
 
 
a383d87
 
6c7d766
 
a383d87
6c7d766
 
e6ccf57
6c7d766
 
1a55708
6c7d766
 
 
 
 
0dda2a1
011040f
8f8a88e
681223f
cfd2b5e
40d15f0
011040f
40d15f0
6c7d766
 
064943c
40d15f0
011040f
40d15f0
5ebc71d
 
6c7d766
5ebc71d
6c7d766
 
 
 
 
 
 
 
 
e6ccf57
6c7d766
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import io
from functions import *
from PyPDF2 import PdfReader
import pandas as pd
from fastapi import FastAPI, File, UploadFile
from fastapi.middleware.cors import CORSMiddleware
from langchain_community.document_loaders import UnstructuredURLLoader



app = FastAPI(title = "ConversAI", root_path = "/api/v1")
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.post("/signup")
async def signup(username: str, password: str):
    response = createUser(username = username, password = password)
    return response


@app.post("/login")
async def login(username: str, password: str):
    response = matchPassword(username = username, password = password)
    return response


@app.post("/newChatbot")
async def newChatbot(chatbotName: str, username: str):
    client.table("ConversAI_ChatbotInfo").insert({"username": username, "chatbotname": chatbotName}).execute()
    chatbotName = f"convai-{username}-{chatbotName}"
    return createTable(tablename = chatbotName)


@app.post("/addPDF")
async def addPDFData(vectorstore: str, pdf: UploadFile = File(...)):
    pdf = await pdf.read()
    reader = PdfReader(io.BytesIO(pdf))
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    username, chatbotname = vectorstore.split("-")[1], vectorstore.split("-")[2]
    df = pd.DataFrame(client.table("ConversAI_ChatbotInfo").select("*").execute().data)
    currentCount = df[(df["username"] == username) & (df["chatbotname"] == chatbotname)]["charactercount"].iloc[0]
    newCount = currentCount + len(text)
    if newCount < 400000:
        client.table("ConversAI_ChatbotInfo").update({"charactercount": str(newCount)}).eq("username", username).eq("chatbotname", chatbotname).execute()
        return addDocuments(text = text, vectorstore = vectorstore)
    else:
        return {
            "output": "DOCUMENT EXCEEDING LIMITS, PLEASE TRY WITH A SMALLER DOCUMENT."
        }


@app.post("/addText")
async def addText(vectorstore: str, text: str):
    username, chatbotname = vectorstore.split("-")[1], vectorstore.split("-")[2]
    df = pd.DataFrame(client.table("ConversAI_ChatbotInfo").select("*").execute().data)
    currentCount = df[(df["username"] == username) & (df["chatbotname"] == chatbotname)]["charactercount"].iloc[0]
    newCount = currentCount + len(text)
    if newCount < 400000:
        client.table("ConversAI_ChatbotInfo").update({"charactercount": str(newCount)}).eq("username", username).eq("chatbotname", chatbotname).execute()
        return addDocuments(text = text, vectorstore = vectorstore)
    else:
        return {
            "output": "WEBSITE EXCEEDING LIMITS, PLEASE TRY WITH A SMALLER DOCUMENT."
        }


@app.post("/addWebsite")
async def addWebsite(vectorstore: str, websiteUrls: list[str]):
    urls = websiteUrls
    loader = UnstructuredURLLoader(urls=urls)
    docs = loader.load()
    text = "\n\n".join([f"Metadata:\n{docs[doc].metadata} \nPage Content:\n {docs[doc].page_content}" for doc in range(len(docs))])
    username, chatbotname = vectorstore.split("-")[1], vectorstore.split("-")[2]
    df = pd.DataFrame(client.table("ConversAI_ChatbotInfo").select("*").execute().data)
    currentCount = df[(df["username"] == username) & (df["chatbotname"] == chatbotname)]["charactercount"].iloc[0]
    newCount = currentCount + len(text)
    if newCount < 400000:
        client.table("ConversAI_ChatbotInfo").update({"charactercount": str(newCount)}).eq("username", username).eq("chatbotname", chatbotname).execute()
        return addDocuments(text = text, vectorstore = vectorstore)
    else:
        return {
            "output": "WEBSITE EXCEEDING LIMITS, PLEASE TRY WITH A SMALLER DOCUMENT."
        }

@app.post("/answerQuery")
async def answerQuestion(query: str, vectorstore: str, llmModel: str = "llama3-70b-8192"):
    return answerQuery(query=query, vectorstore=vectorstore, llmModel=llmModel)


@app.post("/deleteChatbot")
async def delete(chatbotName: str):
    username, chatbotName = chatbotName.split("-")[1], chatbotName.split("-")[2]
    client.table('ConversAI_ChatbotInfo').delete().eq('username', username).eq('chatbotname', chatbotName).execute()
    return deleteTable(tableName=chatbotName)

@app.post("/listChatbots")
async def delete(username: str):
    return listTables(username=username)

@app.post("/getLinks")
async def crawlUrl(baseUrl: str):
    return {
        "urls": getLinks(url=baseUrl, timeout=30)
        }

@app.post("/getCurrentCount")
async def getCount(vectorstore: str):
    username, chatbotName = chatbotName.split("-")[1], chatbotName.split("-")[2]
    df = pd.DataFrame(client.table("ConversAI_ChatbotInfo").select("*").execute().data)
    return {
        "currentCount": df[(df['username'] == username) & (df['chatbotname'] == chatbotName)]['charactercount'].iloc[0]
        }