Spaces:
Running
Running
山越貴耀
commited on
Commit
·
f0842b2
1
Parent(s):
a71e38a
fixed axis lims
Browse files
app.py
CHANGED
@@ -113,12 +113,14 @@ def pre_render_images(df,input_sent_id):
|
|
113 |
ymax,ymin = (max(y_tsne)//yscale_unit+1)*yscale_unit,(min(y_tsne)//yscale_unit-1)*yscale_unit
|
114 |
color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
|
115 |
sent_list = []
|
|
|
116 |
fig_production = st.progress(0)
|
117 |
for fig_id,sent_id in enumerate(sent_id_options):
|
118 |
fig_production.progress(fig_id+1)
|
119 |
-
plot_fig(
|
120 |
sent_list.append(df.cleaned_sentence.to_list()[sent_id])
|
121 |
-
|
|
|
122 |
|
123 |
|
124 |
if __name__=='__main__':
|
@@ -190,19 +192,19 @@ if __name__=='__main__':
|
|
190 |
x_tsne, y_tsne = df.x_tsne, df.y_tsne
|
191 |
xscale_unit = (max(x_tsne)-min(x_tsne))/10
|
192 |
yscale_unit = (max(y_tsne)-min(y_tsne))/10
|
193 |
-
|
194 |
-
|
195 |
color_list = sns.color_palette('flare',n_colors=1200)
|
196 |
fig_production = st.progress(0)
|
197 |
|
198 |
-
img = plot_fig(df,0,
|
199 |
#img = cv2.imread('figures/0.png')
|
200 |
height, width, layers = img.shape
|
201 |
size = (width,height)
|
202 |
out = cv2.VideoWriter('sampling_video.mp4',cv2.VideoWriter_fourcc(*'H264'), 3, size)
|
203 |
for sent_id in range(1000):
|
204 |
fig_production.progress((sent_id+1)/1000)
|
205 |
-
img = plot_fig(df,sent_id,
|
206 |
#img = cv2.imread(f'figures/{sent_id}.png')
|
207 |
out.write(img)
|
208 |
out.release()
|
@@ -223,8 +225,8 @@ if __name__=='__main__':
|
|
223 |
x_tsne, y_tsne = df.x_tsne, df.y_tsne
|
224 |
xscale_unit = (max(x_tsne)-min(x_tsne))/10
|
225 |
yscale_unit = (max(y_tsne)-min(y_tsne))/10
|
226 |
-
|
227 |
-
|
228 |
color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
|
229 |
|
230 |
fig = plt.figure(figsize=(5,5),dpi=200)
|
|
|
113 |
ymax,ymin = (max(y_tsne)//yscale_unit+1)*yscale_unit,(min(y_tsne)//yscale_unit-1)*yscale_unit
|
114 |
color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
|
115 |
sent_list = []
|
116 |
+
fig_list = []
|
117 |
fig_production = st.progress(0)
|
118 |
for fig_id,sent_id in enumerate(sent_id_options):
|
119 |
fig_production.progress(fig_id+1)
|
120 |
+
img = plot_fig(df,sent_id,[xmin,xmax],[ymin,ymax],color_list)
|
121 |
sent_list.append(df.cleaned_sentence.to_list()[sent_id])
|
122 |
+
fig_list.append(img)
|
123 |
+
return sent_list,fig_list
|
124 |
|
125 |
|
126 |
if __name__=='__main__':
|
|
|
192 |
x_tsne, y_tsne = df.x_tsne, df.y_tsne
|
193 |
xscale_unit = (max(x_tsne)-min(x_tsne))/10
|
194 |
yscale_unit = (max(y_tsne)-min(y_tsne))/10
|
195 |
+
xlims = [(max(x_tsne)//xscale_unit+1)*xscale_unit,(min(x_tsne)//xscale_unit-1)*xscale_unit]
|
196 |
+
ylims = [(max(y_tsne)//yscale_unit+1)*yscale_unit,(min(y_tsne)//yscale_unit-1)*yscale_unit]
|
197 |
color_list = sns.color_palette('flare',n_colors=1200)
|
198 |
fig_production = st.progress(0)
|
199 |
|
200 |
+
img = plot_fig(df,0,xlims,ylims,color_list)
|
201 |
#img = cv2.imread('figures/0.png')
|
202 |
height, width, layers = img.shape
|
203 |
size = (width,height)
|
204 |
out = cv2.VideoWriter('sampling_video.mp4',cv2.VideoWriter_fourcc(*'H264'), 3, size)
|
205 |
for sent_id in range(1000):
|
206 |
fig_production.progress((sent_id+1)/1000)
|
207 |
+
img = plot_fig(df,sent_id,xlims,ylims,color_list)
|
208 |
#img = cv2.imread(f'figures/{sent_id}.png')
|
209 |
out.write(img)
|
210 |
out.release()
|
|
|
225 |
x_tsne, y_tsne = df.x_tsne, df.y_tsne
|
226 |
xscale_unit = (max(x_tsne)-min(x_tsne))/10
|
227 |
yscale_unit = (max(y_tsne)-min(y_tsne))/10
|
228 |
+
xlims = [(max(x_tsne)//xscale_unit+1)*xscale_unit,(min(x_tsne)//xscale_unit-1)*xscale_unit]
|
229 |
+
ylims = [(max(y_tsne)//yscale_unit+1)*yscale_unit,(min(y_tsne)//yscale_unit-1)*yscale_unit]
|
230 |
color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
|
231 |
|
232 |
fig = plt.figure(figsize=(5,5),dpi=200)
|