Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import snapshot_download
|
2 |
+
from insightface.app import FaceAnalysis
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# 下载模型
|
8 |
+
snapshot_download(
|
9 |
+
"fal/AuraFace-v1",
|
10 |
+
local_dir="models/auraface",
|
11 |
+
)
|
12 |
+
|
13 |
+
# 初始化FaceAnalysis
|
14 |
+
face_app = FaceAnalysis(
|
15 |
+
name="auraface",
|
16 |
+
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
|
17 |
+
root=".",
|
18 |
+
)
|
19 |
+
|
20 |
+
def get_embedding(image):
|
21 |
+
# 将图片转换为OpenCV格式
|
22 |
+
cv2_image = np.array(image.convert("RGB"))
|
23 |
+
cv2_image = cv2_image[:, :, ::-1]
|
24 |
+
|
25 |
+
# 获取人脸嵌入
|
26 |
+
faces = face_app.get(cv2_image)
|
27 |
+
if len(faces) > 0:
|
28 |
+
return faces[0].normed_embedding
|
29 |
+
else:
|
30 |
+
return None
|
31 |
+
|
32 |
+
def calculate_similarity(image1, image2):
|
33 |
+
# 获取两张图片的嵌入
|
34 |
+
embedding1 = get_embedding(image1)
|
35 |
+
embedding2 = get_embedding(image2)
|
36 |
+
|
37 |
+
if embedding1 is not None and embedding2 is not None:
|
38 |
+
# 计算余弦相似度
|
39 |
+
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
|
40 |
+
return f"图片相似度: {similarity:.4f}"
|
41 |
+
else:
|
42 |
+
return "无法检测到人脸或计算相似度"
|
43 |
+
|
44 |
+
# 创建Gradio界面
|
45 |
+
iface = gr.Interface(
|
46 |
+
fn=calculate_similarity,
|
47 |
+
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
48 |
+
outputs="text",
|
49 |
+
title="图片相似度计算",
|
50 |
+
description="上传两张图片,计算它们的相似度。"
|
51 |
+
)
|
52 |
+
|
53 |
+
# 启动Gradio应用
|
54 |
+
iface.launch(share = True)
|