Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Dict
|
2 |
+
History = List[Tuple[str, str]]
|
3 |
+
Messages = List[Dict[str, str]]
|
4 |
+
|
5 |
+
import enum
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import List, Dict, Any, Optional, Tuple
|
8 |
+
from collections import defaultdict
|
9 |
+
|
10 |
+
|
11 |
+
@dataclass(frozen=True)
|
12 |
+
class Action:
|
13 |
+
value: str # LM returned string for now
|
14 |
+
use_tool: bool # if use_tool == False -> propose answer
|
15 |
+
error: Optional[str] = None
|
16 |
+
|
17 |
+
def lm_output_to_action(lm_output: str) -> Action:
|
18 |
+
propose_solution = bool("<solution>" in lm_output)
|
19 |
+
return Action(lm_output, not propose_solution)
|
20 |
+
|
21 |
+
from typing import Mapping
|
22 |
+
import re
|
23 |
+
import signal
|
24 |
+
from contextlib import contextmanager
|
25 |
+
from IPython.core.interactiveshell import InteractiveShell
|
26 |
+
from IPython.utils import io
|
27 |
+
from typing import Any
|
28 |
+
|
29 |
+
from abc import ABC, abstractmethod
|
30 |
+
from typing import Any
|
31 |
+
|
32 |
+
|
33 |
+
class Tool(ABC):
|
34 |
+
"""Abstract class for a tool."""
|
35 |
+
|
36 |
+
name: str
|
37 |
+
signature: str
|
38 |
+
description: str
|
39 |
+
|
40 |
+
@abstractmethod
|
41 |
+
def __call__(self, *args: Any, **kwds: Any) -> str:
|
42 |
+
"""Execute the tool with the given args and return the output."""
|
43 |
+
# execute tool with abitrary args
|
44 |
+
pass
|
45 |
+
|
46 |
+
def reset(self) -> None:
|
47 |
+
"""Reset the tool to its initial state."""
|
48 |
+
pass
|
49 |
+
|
50 |
+
|
51 |
+
class PythonREPL(Tool):
|
52 |
+
"""A tool for running python code in a REPL."""
|
53 |
+
|
54 |
+
name = "PythonREPL"
|
55 |
+
# This PythonREPL is not used by the environment; It is THE ENVIRONMENT.
|
56 |
+
signature = "NOT_USED"
|
57 |
+
description = "NOT_USED"
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
user_ns: Mapping[str, Any],
|
62 |
+
timeout: int = 30,
|
63 |
+
) -> None:
|
64 |
+
super().__init__()
|
65 |
+
self.user_ns = user_ns
|
66 |
+
self.timeout = timeout
|
67 |
+
self.reset()
|
68 |
+
|
69 |
+
@contextmanager
|
70 |
+
def time_limit(self, seconds):
|
71 |
+
def signal_handler(signum, frame):
|
72 |
+
raise TimeoutError(f"Timed out after {seconds} seconds.")
|
73 |
+
|
74 |
+
signal.signal(signal.SIGALRM, signal_handler)
|
75 |
+
signal.alarm(seconds)
|
76 |
+
try:
|
77 |
+
yield
|
78 |
+
finally:
|
79 |
+
signal.alarm(0) # Disable the alarm
|
80 |
+
|
81 |
+
def reset(self) -> None:
|
82 |
+
InteractiveShell.clear_instance()
|
83 |
+
self.shell = InteractiveShell.instance(
|
84 |
+
# NOTE: shallow copy is needed to avoid
|
85 |
+
# shell modifying the original user_ns dict
|
86 |
+
user_ns=dict(self.user_ns),
|
87 |
+
colors="NoColor",
|
88 |
+
)
|
89 |
+
|
90 |
+
def __call__(self, query: str) -> str:
|
91 |
+
"""Use the tool and return observation"""
|
92 |
+
with io.capture_output() as captured:
|
93 |
+
_ = self.shell.run_cell(query, store_history=True)
|
94 |
+
output = captured.stdout
|
95 |
+
|
96 |
+
if output == "":
|
97 |
+
output = "[Executed Successfully with No Output]"
|
98 |
+
|
99 |
+
# replace potentially sensitive filepath
|
100 |
+
# e.g., File /mint/mint/tools/python_tool.py:30, in PythonREPL.time_limit.<locals>.signal_handler(signum, frame)
|
101 |
+
# with File <filepath>:30, in PythonREPL.time_limit.<locals>.signal_handler(signum, frame)
|
102 |
+
# use re
|
103 |
+
output = re.sub(
|
104 |
+
# r"File (/mint/)mint/tools/python_tool.py:(\d+)",
|
105 |
+
r"File (.*)mint/tools/python_tool.py:(\d+)",
|
106 |
+
r"File <hidden_filepath>:\1",
|
107 |
+
output,
|
108 |
+
)
|
109 |
+
if len(output) > 2000:
|
110 |
+
output = output[:2000] + "...\n[Output Truncated]"
|
111 |
+
|
112 |
+
return output
|
113 |
+
|
114 |
+
class ParseError(Exception):
|
115 |
+
pass
|
116 |
+
|
117 |
+
def parse_action(action: Action) -> Tuple[str, Dict[str, Any]]:
|
118 |
+
"""Define the parsing logic."""
|
119 |
+
lm_output = "\n" + action.value + "\n"
|
120 |
+
output = {}
|
121 |
+
try:
|
122 |
+
if not action.use_tool:
|
123 |
+
answer = "\n".join(
|
124 |
+
[
|
125 |
+
i.strip()
|
126 |
+
for i in re.findall(
|
127 |
+
r"<solution>(.*?)</solution>", lm_output, re.DOTALL
|
128 |
+
)
|
129 |
+
]
|
130 |
+
)
|
131 |
+
if answer == "":
|
132 |
+
raise ParseError("No answer found.")
|
133 |
+
output["answer"] = answer
|
134 |
+
else:
|
135 |
+
env_input = "\n".join(
|
136 |
+
[
|
137 |
+
i.strip()
|
138 |
+
for i in re.findall(
|
139 |
+
r"<execute>(.*?)</execute>", lm_output, re.DOTALL
|
140 |
+
)
|
141 |
+
]
|
142 |
+
)
|
143 |
+
if env_input == "":
|
144 |
+
raise ParseError("No code found.")
|
145 |
+
output["env_input"] = env_input
|
146 |
+
except Exception as e:
|
147 |
+
raise ParseError(e)
|
148 |
+
return output
|
149 |
+
|
150 |
+
python_repl = PythonREPL(
|
151 |
+
user_ns={},
|
152 |
+
)
|
153 |
+
|
154 |
+
import gradio as gr
|
155 |
+
import llama_cpp
|
156 |
+
import llama_cpp.llama_tokenizer
|
157 |
+
import torch
|
158 |
+
|
159 |
+
if torch.cuda.is_available():
|
160 |
+
CodeActAgent_llm = llama_cpp.Llama.from_pretrained(
|
161 |
+
repo_id="xingyaoww/CodeActAgent-Mistral-7b-v0.1.q8_0.gguf",
|
162 |
+
filename="*q8_0.gguf",
|
163 |
+
verbose=False,
|
164 |
+
n_gpu_layers = -1,
|
165 |
+
n_ctx = 3060
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
CodeActAgent_llm = llama_cpp.Llama.from_pretrained(
|
169 |
+
repo_id="xingyaoww/CodeActAgent-Mistral-7b-v0.1.q8_0.gguf",
|
170 |
+
filename="*q8_0.gguf",
|
171 |
+
verbose=False,
|
172 |
+
#n_gpu_layers = -1,
|
173 |
+
n_ctx = 3060
|
174 |
+
)
|
175 |
+
|
176 |
+
system_prompt = '''
|
177 |
+
You are a helpful assistant assigned with the task of problem-solving. To achieve this, you will be using an interactive coding environment equipped with a variety of tool functions to assist you throughout the process.
|
178 |
+
|
179 |
+
At each turn, you should first provide your step-by-step thinking for solving the task. Your thought process should be enclosed using "<thought>" tag, for example: <thought> I need to print "Hello World!" </thought>.
|
180 |
+
|
181 |
+
After that, you have two options:
|
182 |
+
|
183 |
+
1) Interact with a Python programming environment and receive the corresponding output. Your code should be enclosed using "<execute>" tag, for example: <execute> print("Hello World!") </execute>.
|
184 |
+
2) Directly provide a solution that adheres to the required format for the given task. Your solution should be enclosed using "<solution>" tag, for example: The answer is <solution> A </solution>.
|
185 |
+
|
186 |
+
You have {max_total_steps} chances to interact with the environment or propose a solution. You can only propose a solution {max_propose_solution} times.
|
187 |
+
'''.format(
|
188 |
+
**{
|
189 |
+
"max_total_steps": 5,
|
190 |
+
"max_propose_solution": 2,
|
191 |
+
}
|
192 |
+
)
|
193 |
+
|
194 |
+
|
195 |
+
def exe_to_md(str_):
|
196 |
+
req = str_.replace("<execute>" ,"```python").replace("</execute>" ,"```").replace("<solution>" ,"```python").replace("</solution>" ,"```")
|
197 |
+
if "<thought>" in req and "def " in req:
|
198 |
+
req = req.replace("<thought>" ,"```python").replace("</thought>" ,"```")
|
199 |
+
return req
|
200 |
+
|
201 |
+
def md_to_exe(str_):
|
202 |
+
return str_.replace("```python", "<execute>").replace("```", "</execute>")
|
203 |
+
|
204 |
+
def clear_session() -> History:
|
205 |
+
return '', []
|
206 |
+
|
207 |
+
def modify_system_session(system: str) -> str:
|
208 |
+
if system is None or len(system) == 0:
|
209 |
+
system = default_system
|
210 |
+
return system, system, []
|
211 |
+
|
212 |
+
def history_to_messages(history: History, system: str) -> Messages:
|
213 |
+
messages = [{'role': "system", 'content': system}]
|
214 |
+
for h in history:
|
215 |
+
messages.append({'role': "user", 'content': h[0]})
|
216 |
+
if h[1] != "π":
|
217 |
+
messages.append({'role': "assistant", 'content':
|
218 |
+
md_to_exe(h[1])
|
219 |
+
})
|
220 |
+
return messages
|
221 |
+
|
222 |
+
def messages_to_history(messages: Messages) -> Tuple[str, History]:
|
223 |
+
assert messages[0]['role'] == "system"
|
224 |
+
system = messages[0]['content']
|
225 |
+
history = []
|
226 |
+
import numpy as np
|
227 |
+
import pandas as pd
|
228 |
+
from copy import deepcopy
|
229 |
+
messages = deepcopy(messages)
|
230 |
+
if messages[-1]["role"] == "user":
|
231 |
+
messages += [{"role": "assistant", "content": "π"}]
|
232 |
+
|
233 |
+
messages_ = []
|
234 |
+
for ele in messages[1:]:
|
235 |
+
if not messages_:
|
236 |
+
messages_.append(ele)
|
237 |
+
else:
|
238 |
+
if messages_[-1]["role"] == ele["role"]:
|
239 |
+
continue
|
240 |
+
else:
|
241 |
+
messages_.append(ele)
|
242 |
+
|
243 |
+
history = pd.DataFrame(np.asarray(messages_).reshape([-1, 2]).tolist()).applymap(
|
244 |
+
lambda x: x["content"]
|
245 |
+
).applymap(
|
246 |
+
exe_to_md
|
247 |
+
).values.tolist()
|
248 |
+
return system, history
|
249 |
+
|
250 |
+
def model_chat(query: Optional[str], history: Optional[History], system: str
|
251 |
+
) -> Tuple[str, str, History]:
|
252 |
+
if query is None:
|
253 |
+
query = ''
|
254 |
+
if history is None:
|
255 |
+
history = []
|
256 |
+
messages = history_to_messages(history, system)
|
257 |
+
if query:
|
258 |
+
messages.append({'role': "user", 'content': query})
|
259 |
+
|
260 |
+
response = CodeActAgent_llm.create_chat_completion(
|
261 |
+
messages=messages,
|
262 |
+
stream=True,
|
263 |
+
top_p = 0.9,
|
264 |
+
temperature = 0.01
|
265 |
+
)
|
266 |
+
|
267 |
+
from IPython.display import clear_output
|
268 |
+
lm_output = ""
|
269 |
+
for chunk in response:
|
270 |
+
delta = chunk["choices"][0]["delta"]
|
271 |
+
if "content" not in delta:
|
272 |
+
continue
|
273 |
+
lm_output += delta["content"]
|
274 |
+
|
275 |
+
lm_output = lm_output.replace("<solution>", "<execute>").replace("</solution>", "</execute>")
|
276 |
+
|
277 |
+
if "<execute>" in lm_output:
|
278 |
+
action_out = lm_output_to_action(lm_output)
|
279 |
+
parsed = parse_action(action_out)
|
280 |
+
env_input = parsed["env_input"]
|
281 |
+
obs = python_repl(env_input).strip()
|
282 |
+
obs = '''
|
283 |
+
Observation:
|
284 |
+
{}
|
285 |
+
'''.format(obs).strip()
|
286 |
+
|
287 |
+
system, history = messages_to_history(messages + [
|
288 |
+
{'role': "assistant",
|
289 |
+
'content': exe_to_md(lm_output)},
|
290 |
+
{
|
291 |
+
'role': "user",
|
292 |
+
"content": obs
|
293 |
+
}
|
294 |
+
])
|
295 |
+
elif "<thought>" in lm_output:
|
296 |
+
system, history = messages_to_history(messages + [
|
297 |
+
{'role': "assistant",
|
298 |
+
'content': exe_to_md(lm_output)},
|
299 |
+
])
|
300 |
+
else:
|
301 |
+
system, history = messages_to_history(messages + [
|
302 |
+
{'role': "assistant",
|
303 |
+
'content': exe_to_md(lm_output)},
|
304 |
+
])
|
305 |
+
return "", history, system
|
306 |
+
|
307 |
+
|
308 |
+
with gr.Blocks() as demo:
|
309 |
+
gr.Markdown("""<center><font size=8>CodeActAgent Mistral 7B Bot π€</center>""")
|
310 |
+
|
311 |
+
with gr.Row():
|
312 |
+
with gr.Column(scale=3):
|
313 |
+
system_input = gr.Textbox(value=system_prompt, lines=1, label='System', visible = False)
|
314 |
+
with gr.Column(scale=1):
|
315 |
+
modify_system = gr.Button("π οΈ Set system prompt and clear history", scale=2, visible = False)
|
316 |
+
system_state = gr.Textbox(value=system_prompt, visible=False)
|
317 |
+
chatbot = gr.Chatbot(label='CodeActAgent-Mistral-7b-v0.1')
|
318 |
+
textbox = gr.Textbox(lines=2, label='Input')
|
319 |
+
|
320 |
+
with gr.Row():
|
321 |
+
clear_history = gr.Button("π§Ή Clear History")
|
322 |
+
sumbit = gr.Button("π Send")
|
323 |
+
|
324 |
+
sumbit.click(model_chat,
|
325 |
+
inputs=[textbox, chatbot, system_state],
|
326 |
+
outputs=[textbox, chatbot, system_input],
|
327 |
+
concurrency_limit = 100)
|
328 |
+
clear_history.click(fn=clear_session,
|
329 |
+
inputs=[],
|
330 |
+
outputs=[textbox, chatbot])
|
331 |
+
modify_system.click(fn=modify_system_session,
|
332 |
+
inputs=[system_input],
|
333 |
+
outputs=[system_state, system_input, chatbot])
|
334 |
+
|
335 |
+
gr.Examples(
|
336 |
+
[
|
337 |
+
"teach me how to use numpy.",
|
338 |
+
"Give me a python function give the divide of number it self 10 times.",
|
339 |
+
'''
|
340 |
+
Plot box plot with pandas and save it to local.
|
341 |
+
'''.strip(),
|
342 |
+
|
343 |
+
'''
|
344 |
+
Write a python code about, download image to local from url, the format as :
|
345 |
+
url = f'https://image.pollinations.ai/prompt/{prompt}'
|
346 |
+
where prompt as the input of download function.
|
347 |
+
'''.strip(),
|
348 |
+
"Use this function download a image of bee.",
|
349 |
+
|
350 |
+
'''
|
351 |
+
Draw a picture teach me what linear regression is.
|
352 |
+
'''.strip(),
|
353 |
+
"Use more points and draw the image with the line fitted.",
|
354 |
+
|
355 |
+
'''
|
356 |
+
Write a piece of Python code to simulate the financial transaction process and draw a financial images chart by lineplot of Poisson process.
|
357 |
+
'''.strip(),
|
358 |
+
#"Add monotonic increasing trend on it.",
|
359 |
+
"Add a Trigonometric function loop on it.",
|
360 |
+
],
|
361 |
+
inputs = textbox,
|
362 |
+
label = "Task Prompt: \n(Used to give the function or task defination on the head)",
|
363 |
+
)
|
364 |
+
|
365 |
+
gr.Examples(
|
366 |
+
[
|
367 |
+
'''
|
368 |
+
Give me the function defination. π‘
|
369 |
+
'''.strip(),
|
370 |
+
|
371 |
+
'''
|
372 |
+
Correct it. βΉοΈβ
|
373 |
+
'''.strip(),
|
374 |
+
|
375 |
+
'''
|
376 |
+
Save the output as image πΌοΈ to local. β¬
|
377 |
+
'''.strip(),
|
378 |
+
|
379 |
+
'''
|
380 |
+
Good Job π
|
381 |
+
'''.strip(),
|
382 |
+
],
|
383 |
+
inputs = textbox,
|
384 |
+
label = "Action Prompt: \n(Used to specify downstream actions taken by LLM, such as modifying errors, saving running results locally, saying you did a good job, etc.)",
|
385 |
+
)
|
386 |
+
|
387 |
+
demo.queue(api_open=False)
|
388 |
+
demo.launch(max_threads=30, share = False)
|