Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModel, AutoTokenizer | |
import torch | |
# The model name | |
model_name = "emilyalsentzer/Bio_ClinicalBERT" | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModel.from_pretrained(model_name) | |
# Streamlit app UI | |
st.title("Medical Text Analysis with ClinicalBERT") | |
st.write("Type in a medical text input to get the CLS token embedding.") | |
# User input | |
text = st.text_input("Enter Medical Text") | |
if st.button("Predict"): | |
if text.strip(): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
outputs = model(**inputs) | |
cls_embedding = outputs.last_hidden_state[:, 0, :].detach().numpy() | |
st.write(f"CLS Embedding (first 5 values): {cls_embedding[0][:5]}") | |
else: | |
st.write("Please enter some text.") | |