import gc import platform import numpy as np import gradio as gr import json import torch import torchaudio from aeiou.viz import audio_spectrogram_image from einops import rearrange from safetensors.torch import load_file from torch.nn import functional as F from torchaudio import transforms as T from ..inference.generation import generate_diffusion_cond, generate_diffusion_uncond from ..models.factory import create_model_from_config from ..models.pretrained import get_pretrained_model from ..models.utils import load_ckpt_state_dict from ..inference.utils import prepare_audio from ..training.utils import copy_state_dict model = None sample_rate = 32000 sample_size = 1920000 def load_model(model_config=None, model_ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, device="cuda", model_half=False): global model, sample_rate, sample_size if pretrained_name is not None: print(f"Loading pretrained model {pretrained_name}") model, model_config = get_pretrained_model(pretrained_name) elif model_config is not None and model_ckpt_path is not None: print(f"Creating model from config") model = create_model_from_config(model_config) print(f"Loading model checkpoint from {model_ckpt_path}") # Load checkpoint copy_state_dict(model, load_ckpt_state_dict(model_ckpt_path)) #model.load_state_dict(load_ckpt_state_dict(model_ckpt_path)) sample_rate = model_config["sample_rate"] sample_size = model_config["sample_size"] if pretransform_ckpt_path is not None: print(f"Loading pretransform checkpoint from {pretransform_ckpt_path}") model.pretransform.load_state_dict(load_ckpt_state_dict(pretransform_ckpt_path), strict=False) print(f"Done loading pretransform") model.to(device).eval().requires_grad_(False) if model_half: model.to(torch.float16) print(f"Done loading model") return model, model_config def generate_cond( prompt, negative_prompt=None, seconds_start=0, seconds_total=30, cfg_scale=6.0, steps=250, preview_every=None, seed=-1, sampler_type="dpmpp-3m-sde", sigma_min=0.03, sigma_max=1000, cfg_rescale=0.0, use_init=False, init_audio=None, init_noise_level=1.0, mask_cropfrom=None, mask_pastefrom=None, mask_pasteto=None, mask_maskstart=None, mask_maskend=None, mask_softnessL=None, mask_softnessR=None, mask_marination=None, batch_size=1 ): if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() print(f"Prompt: {prompt}") global preview_images preview_images = [] if preview_every == 0: preview_every = None # Return fake stereo audio conditioning = [{"prompt": prompt, "seconds_start": seconds_start, "seconds_total": seconds_total}] * batch_size if negative_prompt: negative_conditioning = [{"prompt": negative_prompt, "seconds_start": seconds_start, "seconds_total": seconds_total}] * batch_size else: negative_conditioning = None #Get the device from the model device = next(model.parameters()).device seed = int(seed) if not use_init: init_audio = None input_sample_size = sample_size if init_audio is not None: in_sr, init_audio = init_audio # Turn into torch tensor, converting from int16 to float32 init_audio = torch.from_numpy(init_audio).float().div(32767) if init_audio.dim() == 1: init_audio = init_audio.unsqueeze(0) # [1, n] elif init_audio.dim() == 2: init_audio = init_audio.transpose(0, 1) # [n, 2] -> [2, n] if in_sr != sample_rate: resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device) init_audio = resample_tf(init_audio) audio_length = init_audio.shape[-1] if audio_length > sample_size: input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length init_audio = (sample_rate, init_audio) def progress_callback(callback_info): global preview_images denoised = callback_info["denoised"] current_step = callback_info["i"] sigma = callback_info["sigma"] if (current_step - 1) % preview_every == 0: if model.pretransform is not None: denoised = model.pretransform.decode(denoised) denoised = rearrange(denoised, "b d n -> d (b n)") denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu() audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate) preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})")) # If inpainting, send mask args # This will definitely change in the future if mask_cropfrom is not None: mask_args = { "cropfrom": mask_cropfrom, "pastefrom": mask_pastefrom, "pasteto": mask_pasteto, "maskstart": mask_maskstart, "maskend": mask_maskend, "softnessL": mask_softnessL, "softnessR": mask_softnessR, "marination": mask_marination, } else: mask_args = None # Do the audio generation audio = generate_diffusion_cond( model, conditioning=conditioning, negative_conditioning=negative_conditioning, steps=steps, cfg_scale=cfg_scale, batch_size=batch_size, sample_size=input_sample_size, sample_rate=sample_rate, seed=seed, device=device, sampler_type=sampler_type, sigma_min=sigma_min, sigma_max=sigma_max, init_audio=init_audio, init_noise_level=init_noise_level, mask_args = mask_args, callback = progress_callback if preview_every is not None else None, scale_phi = cfg_rescale ) # Convert to WAV file audio = rearrange(audio, "b d n -> d (b n)") audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() torchaudio.save("output.wav", audio, sample_rate) # Let's look at a nice spectrogram too audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate) return ("output.wav", [audio_spectrogram, *preview_images]) def generate_uncond( steps=250, seed=-1, sampler_type="dpmpp-3m-sde", sigma_min=0.03, sigma_max=1000, use_init=False, init_audio=None, init_noise_level=1.0, batch_size=1, preview_every=None ): global preview_images preview_images = [] if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() #Get the device from the model device = next(model.parameters()).device seed = int(seed) if not use_init: init_audio = None input_sample_size = sample_size if init_audio is not None: in_sr, init_audio = init_audio # Turn into torch tensor, converting from int16 to float32 init_audio = torch.from_numpy(init_audio).float().div(32767) if init_audio.dim() == 1: init_audio = init_audio.unsqueeze(0) # [1, n] elif init_audio.dim() == 2: init_audio = init_audio.transpose(0, 1) # [n, 2] -> [2, n] if in_sr != sample_rate: resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device) init_audio = resample_tf(init_audio) audio_length = init_audio.shape[-1] if audio_length > sample_size: input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length init_audio = (sample_rate, init_audio) def progress_callback(callback_info): global preview_images denoised = callback_info["denoised"] current_step = callback_info["i"] sigma = callback_info["sigma"] if (current_step - 1) % preview_every == 0: if model.pretransform is not None: denoised = model.pretransform.decode(denoised) denoised = rearrange(denoised, "b d n -> d (b n)") denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu() audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate) preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})")) audio = generate_diffusion_uncond( model, steps=steps, batch_size=batch_size, sample_size=input_sample_size, seed=seed, device=device, sampler_type=sampler_type, sigma_min=sigma_min, sigma_max=sigma_max, init_audio=init_audio, init_noise_level=init_noise_level, callback = progress_callback if preview_every is not None else None ) audio = rearrange(audio, "b d n -> d (b n)") audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() torchaudio.save("output.wav", audio, sample_rate) audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate) return ("output.wav", [audio_spectrogram, *preview_images]) def generate_lm( temperature=1.0, top_p=0.95, top_k=0, batch_size=1, ): if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() #Get the device from the model device = next(model.parameters()).device audio = model.generate_audio( batch_size=batch_size, max_gen_len = sample_size//model.pretransform.downsampling_ratio, conditioning=None, temp=temperature, top_p=top_p, top_k=top_k, use_cache=True ) audio = rearrange(audio, "b d n -> d (b n)") audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() torchaudio.save("output.wav", audio, sample_rate) audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate) return ("output.wav", [audio_spectrogram]) def create_uncond_sampling_ui(model_config): generate_button = gr.Button("Generate", variant='primary', scale=1) with gr.Row(equal_height=False): with gr.Column(): with gr.Row(): # Steps slider steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=100, label="Steps") with gr.Accordion("Sampler params", open=False): # Seed seed_textbox = gr.Textbox(label="Seed (set to -1 for random seed)", value="-1") # Sampler params with gr.Row(): sampler_type_dropdown = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-3m-sde") sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma min") sigma_max_slider = gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma max") with gr.Accordion("Init audio", open=False): init_audio_checkbox = gr.Checkbox(label="Use init audio") init_audio_input = gr.Audio(label="Init audio") init_noise_level_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.01, value=0.1, label="Init noise level") with gr.Column(): audio_output = gr.Audio(label="Output audio", interactive=False) audio_spectrogram_output = gr.Gallery(label="Output spectrogram", show_label=False) send_to_init_button = gr.Button("Send to init audio", scale=1) send_to_init_button.click(fn=lambda audio: audio, inputs=[audio_output], outputs=[init_audio_input]) generate_button.click(fn=generate_uncond, inputs=[ steps_slider, seed_textbox, sampler_type_dropdown, sigma_min_slider, sigma_max_slider, init_audio_checkbox, init_audio_input, init_noise_level_slider, ], outputs=[ audio_output, audio_spectrogram_output ], api_name="generate") def create_sampling_ui(model_config, inpainting=False): with gr.Row(): with gr.Column(scale=6): prompt = gr.Textbox(show_label=False, placeholder="Prompt") negative_prompt = gr.Textbox(show_label=False, placeholder="Negative prompt") generate_button = gr.Button("Generate", variant='primary', scale=1) model_conditioning_config = model_config["model"].get("conditioning", None) has_seconds_start = False has_seconds_total = False if model_conditioning_config is not None: for conditioning_config in model_conditioning_config["configs"]: if conditioning_config["id"] == "seconds_start": has_seconds_start = True if conditioning_config["id"] == "seconds_total": has_seconds_total = True with gr.Row(equal_height=False): with gr.Column(): with gr.Row(visible = has_seconds_start or has_seconds_total): # Timing controls seconds_start_slider = gr.Slider(minimum=0, maximum=512, step=1, value=0, label="Seconds start", visible=has_seconds_start) seconds_total_slider = gr.Slider(minimum=0, maximum=512, step=1, value=sample_size//sample_rate, label="Seconds total", visible=has_seconds_total) with gr.Row(): # Steps slider steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=100, label="Steps") # Preview Every slider preview_every_slider = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Preview Every") # CFG scale cfg_scale_slider = gr.Slider(minimum=0.0, maximum=25.0, step=0.1, value=7.0, label="CFG scale") with gr.Accordion("Sampler params", open=False): # Seed seed_textbox = gr.Textbox(label="Seed (set to -1 for random seed)", value="-1") # Sampler params with gr.Row(): sampler_type_dropdown = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-3m-sde") sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma min") sigma_max_slider = gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma max") cfg_rescale_slider = gr.Slider(minimum=0.0, maximum=1, step=0.01, value=0.0, label="CFG rescale amount") if inpainting: # Inpainting Tab with gr.Accordion("Inpainting", open=False): sigma_max_slider.maximum=1000 init_audio_checkbox = gr.Checkbox(label="Do inpainting") init_audio_input = gr.Audio(label="Init audio") init_noise_level_slider = gr.Slider(minimum=0.1, maximum=100.0, step=0.1, value=80, label="Init audio noise level", visible=False) # hide this mask_cropfrom_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Crop From %") mask_pastefrom_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Paste From %") mask_pasteto_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=100, label="Paste To %") mask_maskstart_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=50, label="Mask Start %") mask_maskend_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=100, label="Mask End %") mask_softnessL_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Softmask Left Crossfade Length %") mask_softnessR_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Softmask Right Crossfade Length %") mask_marination_slider = gr.Slider(minimum=0.0, maximum=1, step=0.0001, value=0, label="Marination level", visible=False) # still working on the usefulness of this inputs = [prompt, negative_prompt, seconds_start_slider, seconds_total_slider, cfg_scale_slider, steps_slider, preview_every_slider, seed_textbox, sampler_type_dropdown, sigma_min_slider, sigma_max_slider, cfg_rescale_slider, init_audio_checkbox, init_audio_input, init_noise_level_slider, mask_cropfrom_slider, mask_pastefrom_slider, mask_pasteto_slider, mask_maskstart_slider, mask_maskend_slider, mask_softnessL_slider, mask_softnessR_slider, mask_marination_slider ] else: # Default generation tab with gr.Accordion("Init audio", open=False): init_audio_checkbox = gr.Checkbox(label="Use init audio") init_audio_input = gr.Audio(label="Init audio") init_noise_level_slider = gr.Slider(minimum=0.1, maximum=100.0, step=0.01, value=0.1, label="Init noise level") inputs = [prompt, negative_prompt, seconds_start_slider, seconds_total_slider, cfg_scale_slider, steps_slider, preview_every_slider, seed_textbox, sampler_type_dropdown, sigma_min_slider, sigma_max_slider, cfg_rescale_slider, init_audio_checkbox, init_audio_input, init_noise_level_slider ] with gr.Column(): audio_output = gr.Audio(label="Output audio", interactive=False) audio_spectrogram_output = gr.Gallery(label="Output spectrogram", show_label=False) send_to_init_button = gr.Button("Send to init audio", scale=1) send_to_init_button.click(fn=lambda audio: audio, inputs=[audio_output], outputs=[init_audio_input]) generate_button.click(fn=generate_cond, inputs=inputs, outputs=[ audio_output, audio_spectrogram_output ], api_name="generate") def create_txt2audio_ui(model_config): with gr.Blocks() as ui: with gr.Tab("Generation"): create_sampling_ui(model_config) with gr.Tab("Inpainting"): create_sampling_ui(model_config, inpainting=True) return ui def create_diffusion_uncond_ui(model_config): with gr.Blocks() as ui: create_uncond_sampling_ui(model_config) return ui def autoencoder_process(audio, latent_noise, n_quantizers): if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() #Get the device from the model device = next(model.parameters()).device in_sr, audio = audio audio = torch.from_numpy(audio).float().div(32767).to(device) if audio.dim() == 1: audio = audio.unsqueeze(0) else: audio = audio.transpose(0, 1) audio = model.preprocess_audio_for_encoder(audio, in_sr) # Note: If you need to do chunked encoding, to reduce VRAM, # then add these arguments to encode_audio and decode_audio: chunked=True, overlap=32, chunk_size=128 # To turn it off, do chunked=False # Optimal overlap and chunk_size values will depend on the model. # See encode_audio & decode_audio in autoencoders.py for more info # Get dtype of model dtype = next(model.parameters()).dtype audio = audio.to(dtype) if n_quantizers > 0: latents = model.encode_audio(audio, chunked=False, n_quantizers=n_quantizers) else: latents = model.encode_audio(audio, chunked=False) if latent_noise > 0: latents = latents + torch.randn_like(latents) * latent_noise audio = model.decode_audio(latents, chunked=False) audio = rearrange(audio, "b d n -> d (b n)") audio = audio.to(torch.float32).clamp(-1, 1).mul(32767).to(torch.int16).cpu() torchaudio.save("output.wav", audio, sample_rate) return "output.wav" def create_autoencoder_ui(model_config): is_dac_rvq = "model" in model_config and "bottleneck" in model_config["model"] and model_config["model"]["bottleneck"]["type"] in ["dac_rvq","dac_rvq_vae"] if is_dac_rvq: n_quantizers = model_config["model"]["bottleneck"]["config"]["n_codebooks"] else: n_quantizers = 0 with gr.Blocks() as ui: input_audio = gr.Audio(label="Input audio") output_audio = gr.Audio(label="Output audio", interactive=False) n_quantizers_slider = gr.Slider(minimum=1, maximum=n_quantizers, step=1, value=n_quantizers, label="# quantizers", visible=is_dac_rvq) latent_noise_slider = gr.Slider(minimum=0.0, maximum=10.0, step=0.001, value=0.0, label="Add latent noise") process_button = gr.Button("Process", variant='primary', scale=1) process_button.click(fn=autoencoder_process, inputs=[input_audio, latent_noise_slider, n_quantizers_slider], outputs=output_audio, api_name="process") return ui def diffusion_prior_process(audio, steps, sampler_type, sigma_min, sigma_max): if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() #Get the device from the model device = next(model.parameters()).device in_sr, audio = audio audio = torch.from_numpy(audio).float().div(32767).to(device) if audio.dim() == 1: audio = audio.unsqueeze(0) # [1, n] elif audio.dim() == 2: audio = audio.transpose(0, 1) # [n, 2] -> [2, n] audio = audio.unsqueeze(0) audio = model.stereoize(audio, in_sr, steps, sampler_kwargs={"sampler_type": sampler_type, "sigma_min": sigma_min, "sigma_max": sigma_max}) audio = rearrange(audio, "b d n -> d (b n)") audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() torchaudio.save("output.wav", audio, sample_rate) return "output.wav" def create_diffusion_prior_ui(model_config): with gr.Blocks() as ui: input_audio = gr.Audio(label="Input audio") output_audio = gr.Audio(label="Output audio", interactive=False) # Sampler params with gr.Row(): steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=100, label="Steps") sampler_type_dropdown = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-3m-sde") sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma min") sigma_max_slider = gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma max") process_button = gr.Button("Process", variant='primary', scale=1) process_button.click(fn=diffusion_prior_process, inputs=[input_audio, steps_slider, sampler_type_dropdown, sigma_min_slider, sigma_max_slider], outputs=output_audio, api_name="process") return ui def create_lm_ui(model_config): with gr.Blocks() as ui: output_audio = gr.Audio(label="Output audio", interactive=False) audio_spectrogram_output = gr.Gallery(label="Output spectrogram", show_label=False) # Sampling params with gr.Row(): temperature_slider = gr.Slider(minimum=0, maximum=5, step=0.01, value=1.0, label="Temperature") top_p_slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.95, label="Top p") top_k_slider = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Top k") generate_button = gr.Button("Generate", variant='primary', scale=1) generate_button.click( fn=generate_lm, inputs=[ temperature_slider, top_p_slider, top_k_slider ], outputs=[output_audio, audio_spectrogram_output], api_name="generate" ) return ui def create_ui(model_config_path=None, ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, model_half=False): assert (pretrained_name is not None) ^ (model_config_path is not None and ckpt_path is not None), "Must specify either pretrained name or provide a model config and checkpoint, but not both" if model_config_path is not None: # Load config from json file with open(model_config_path) as f: model_config = json.load(f) else: model_config = None try: has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available() except Exception: # In case this version of Torch doesn't even have `torch.backends.mps`... has_mps = False if has_mps: device = torch.device("mps") elif torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") print("Using device:", device) _, model_config = load_model(model_config, ckpt_path, pretrained_name=pretrained_name, pretransform_ckpt_path=pretransform_ckpt_path, model_half=model_half, device=device) model_type = model_config["model_type"] if model_type == "diffusion_cond": ui = create_txt2audio_ui(model_config) elif model_type == "diffusion_uncond": ui = create_diffusion_uncond_ui(model_config) elif model_type == "autoencoder" or model_type == "diffusion_autoencoder": ui = create_autoencoder_ui(model_config) elif model_type == "diffusion_prior": ui = create_diffusion_prior_ui(model_config) elif model_type == "lm": ui = create_lm_ui(model_config) return ui