sonalkum's picture
stable
9172422
raw
history blame
10.1 kB
import pytorch_lightning as pl
import sys, gc
import random
import torch
import torchaudio
import typing as tp
import wandb
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image
from ema_pytorch import EMA
from einops import rearrange
from safetensors.torch import save_file
from torch import optim
from torch.nn import functional as F
from pytorch_lightning.utilities.rank_zero import rank_zero_only
from ..models.lm import AudioLanguageModelWrapper
from .utils import create_optimizer_from_config, create_scheduler_from_config
class AudioLanguageModelTrainingWrapper(pl.LightningModule):
def __init__(
self,
model: AudioLanguageModelWrapper,
lr = 1e-4,
use_ema=False,
ema_copy=None,
optimizer_configs: dict = None,
pre_encoded=False
):
super().__init__()
self.model = model
self.model.pretransform.requires_grad_(False)
self.model_ema = None
if use_ema:
self.model_ema = EMA(self.model, ema_model=ema_copy, beta=0.99, update_every=10)
assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config"
if optimizer_configs is None:
optimizer_configs = {
"lm": {
"optimizer": {
"type": "AdamW",
"config": {
"lr": lr,
"betas": (0.9, 0.95),
"weight_decay": 0.1
}
}
}
}
else:
if lr is not None:
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.")
self.optimizer_configs = optimizer_configs
self.pre_encoded = pre_encoded
def configure_optimizers(self):
lm_opt_config = self.optimizer_configs['lm']
opt_lm = create_optimizer_from_config(lm_opt_config['optimizer'], self.model.parameters())
if "scheduler" in lm_opt_config:
sched_lm = create_scheduler_from_config(lm_opt_config['scheduler'], opt_lm)
sched_lm_config = {
"scheduler": sched_lm,
"interval": "step"
}
return [opt_lm], [sched_lm_config]
return [opt_lm]
# Copied and modified from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/solvers/musicgen.py under MIT license
# License can be found in LICENSES/LICENSE_META.txt
def _compute_cross_entropy(
self, logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor
) -> tp.Tuple[torch.Tensor, tp.List[torch.Tensor]]:
"""Compute cross entropy between multi-codebook targets and model's logits.
The cross entropy is computed per codebook to provide codebook-level cross entropy.
Valid timesteps for each of the codebook are pulled from the mask, where invalid
timesteps are set to 0.
Args:
logits (torch.Tensor): Model's logits of shape [B, K, T, card].
targets (torch.Tensor): Target codes, of shape [B, K, T].
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
Returns:
ce (torch.Tensor): Cross entropy averaged over the codebooks
ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached).
"""
B, K, T = targets.shape
assert logits.shape[:-1] == targets.shape
assert mask.shape == targets.shape
ce = torch.zeros([], device=targets.device)
ce_per_codebook: tp.List[torch.Tensor] = []
for k in range(K):
logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card]
targets_k = targets[:, k, ...].contiguous().view(-1) # [B x T]
mask_k = mask[:, k, ...].contiguous().view(-1) # [B x T]
ce_targets = targets_k[mask_k]
ce_logits = logits_k[mask_k]
q_ce = F.cross_entropy(ce_logits, ce_targets)
ce += q_ce
ce_per_codebook.append(q_ce.detach())
# average cross entropy across codebooks
ce = ce / K
return ce, ce_per_codebook
def training_step(self, batch, batch_idx):
reals, metadata = batch
if reals.ndim == 4 and reals.shape[0] == 1:
reals = reals[0]
if not self.pre_encoded:
codes = self.model.pretransform.tokenize(reals)
else:
codes = reals
padding_masks = []
for md in metadata:
if md["padding_mask"].ndim == 1:
padding_masks.append(md["padding_mask"])
else:
padding_masks.append(md["padding_mask"][0])
padding_masks = torch.stack(padding_masks, dim=0).to(self.device) # Shape (batch_size, sequence_length)
# Interpolate padding masks to the same length as the codes
padding_masks = F.interpolate(padding_masks.unsqueeze(1).float(), size=codes.shape[2], mode='nearest').bool()
condition_tensors = None
# If the model is conditioned, get the conditioning tensors
if self.model.conditioner is not None:
condition_tensors = self.model.conditioner(metadata, self.device)
lm_output = self.model.compute_logits(codes, condition_tensors=condition_tensors, cfg_dropout_prob=0.1)
logits = lm_output.logits # [b, k, t, c]
logits_mask = lm_output.mask # [b, k, t]
logits_mask = logits_mask & padding_masks
cross_entropy, cross_entropy_per_codebook = self._compute_cross_entropy(logits, codes, logits_mask)
loss = cross_entropy
log_dict = {
'train/loss': loss.detach(),
'train/cross_entropy': cross_entropy.detach(),
'train/perplexity': torch.exp(cross_entropy).detach(),
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr']
}
for k, ce_q in enumerate(cross_entropy_per_codebook):
log_dict[f'cross_entropy_q{k + 1}'] = ce_q
log_dict[f'perplexity_q{k + 1}'] = torch.exp(ce_q)
self.log_dict(log_dict, prog_bar=True, on_step=True)
return loss
def on_before_zero_grad(self, *args, **kwargs):
if self.model_ema is not None:
self.model_ema.update()
def export_model(self, path, use_safetensors=False):
model = self.model_ema.ema_model if self.model_ema is not None else self.model
if use_safetensors:
save_file(model.state_dict(), path)
else:
torch.save({"state_dict": model.state_dict()}, path)
class AudioLanguageModelDemoCallback(pl.Callback):
def __init__(self,
demo_every=2000,
num_demos=8,
sample_size=65536,
sample_rate=48000,
demo_conditioning: tp.Optional[tp.Dict[str, tp.Any]] = None,
demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7],
**kwargs
):
super().__init__()
self.demo_every = demo_every
self.num_demos = num_demos
self.demo_samples = sample_size
self.sample_rate = sample_rate
self.last_demo_step = -1
self.demo_conditioning = demo_conditioning
self.demo_cfg_scales = demo_cfg_scales
@rank_zero_only
@torch.no_grad()
def on_train_batch_end(self, trainer, module: AudioLanguageModelTrainingWrapper, outputs, batch, batch_idx):
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
return
module.eval()
print(f"Generating demo")
self.last_demo_step = trainer.global_step
demo_length_tokens = self.demo_samples // module.model.pretransform.downsampling_ratio
#demo_reals = batch[0][:self.num_demos]
# if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
# demo_reals = demo_reals[0]
#demo_reals_tokens = module.model.pretransform.tokenize(demo_reals)
##Limit to first 50 tokens
#demo_reals_tokens = demo_reals_tokens[:, :, :50]
try:
print("Getting conditioning")
for cfg_scale in self.demo_cfg_scales:
model = module.model # module.model_ema.ema_model if module.model_ema is not None else module.model
print(f"Generating demo for cfg scale {cfg_scale}")
fakes = model.generate_audio(
batch_size=self.num_demos,
max_gen_len=demo_length_tokens,
conditioning=self.demo_conditioning,
#init_data = demo_reals_tokens,
cfg_scale=cfg_scale,
temp=1.0,
top_p=0.95
)
# Put the demos together
fakes = rearrange(fakes, 'b d n -> d (b n)')
log_dict = {}
filename = f'demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav'
fakes = fakes / fakes.abs().max()
fakes = fakes.type(torch.float32).clamp(-1, 1).mul(32767).type(torch.int16).cpu()
torchaudio.save(filename, fakes, self.sample_rate)
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename,
sample_rate=self.sample_rate,
caption=f'Reconstructed')
log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes))
trainer.logger.experiment.log(log_dict)
except Exception as e:
raise e
finally:
gc.collect()
torch.cuda.empty_cache()
module.train()