sonalkum's picture
stable
9172422
raw
history blame
56.6 kB
import pytorch_lightning as pl
import sys, gc
import random
import torch
import torchaudio
import typing as tp
import wandb
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image
import auraloss
from ema_pytorch import EMA
from einops import rearrange
from safetensors.torch import save_file
from torch import optim
from torch.nn import functional as F
from pytorch_lightning.utilities.rank_zero import rank_zero_only
from ..inference.sampling import get_alphas_sigmas, sample, sample_discrete_euler
from ..models.diffusion import DiffusionModelWrapper, ConditionedDiffusionModelWrapper
from ..models.autoencoders import DiffusionAutoencoder
from ..models.diffusion_prior import PriorType
from .autoencoders import create_loss_modules_from_bottleneck
from .losses import AuralossLoss, MSELoss, MultiLoss
from .utils import create_optimizer_from_config, create_scheduler_from_config
from time import time
class Profiler:
def __init__(self):
self.ticks = [[time(), None]]
def tick(self, msg):
self.ticks.append([time(), msg])
def __repr__(self):
rep = 80 * "=" + "\n"
for i in range(1, len(self.ticks)):
msg = self.ticks[i][1]
ellapsed = self.ticks[i][0] - self.ticks[i - 1][0]
rep += msg + f": {ellapsed*1000:.2f}ms\n"
rep += 80 * "=" + "\n\n\n"
return rep
class DiffusionUncondTrainingWrapper(pl.LightningModule):
'''
Wrapper for training an unconditional audio diffusion model (like Dance Diffusion).
'''
def __init__(
self,
model: DiffusionModelWrapper,
lr: float = 1e-4,
pre_encoded: bool = False
):
super().__init__()
self.diffusion = model
self.diffusion_ema = EMA(
self.diffusion.model,
beta=0.9999,
power=3/4,
update_every=1,
update_after_step=1
)
self.lr = lr
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
loss_modules = [
MSELoss("v",
"targets",
weight=1.0,
name="mse_loss"
)
]
self.losses = MultiLoss(loss_modules)
self.pre_encoded = pre_encoded
def configure_optimizers(self):
return optim.Adam([*self.diffusion.parameters()], lr=self.lr)
def training_step(self, batch, batch_idx):
reals = batch[0]
if reals.ndim == 4 and reals.shape[0] == 1:
reals = reals[0]
diffusion_input = reals
loss_info = {}
if not self.pre_encoded:
loss_info["audio_reals"] = diffusion_input
if self.diffusion.pretransform is not None:
if not self.pre_encoded:
with torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
else:
# Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
diffusion_input = diffusion_input / self.diffusion.pretransform.scale
loss_info["reals"] = diffusion_input
# Draw uniformly distributed continuous timesteps
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
# Calculate the noise schedule parameters for those timesteps
alphas, sigmas = get_alphas_sigmas(t)
# Combine the ground truth data and the noise
alphas = alphas[:, None, None]
sigmas = sigmas[:, None, None]
noise = torch.randn_like(diffusion_input)
noised_inputs = diffusion_input * alphas + noise * sigmas
targets = noise * alphas - diffusion_input * sigmas
with torch.cuda.amp.autocast():
v = self.diffusion(noised_inputs, t)
loss_info.update({
"v": v,
"targets": targets
})
loss, losses = self.losses(loss_info)
log_dict = {
'train/loss': loss.detach(),
'train/std_data': diffusion_input.std(),
}
for loss_name, loss_value in losses.items():
log_dict[f"train/{loss_name}"] = loss_value.detach()
self.log_dict(log_dict, prog_bar=True, on_step=True)
return loss
def on_before_zero_grad(self, *args, **kwargs):
self.diffusion_ema.update()
def export_model(self, path, use_safetensors=False):
self.diffusion.model = self.diffusion_ema.ema_model
if use_safetensors:
save_file(self.diffusion.state_dict(), path)
else:
torch.save({"state_dict": self.diffusion.state_dict()}, path)
class DiffusionUncondDemoCallback(pl.Callback):
def __init__(self,
demo_every=2000,
num_demos=8,
demo_steps=250,
sample_rate=48000
):
super().__init__()
self.demo_every = demo_every
self.num_demos = num_demos
self.demo_steps = demo_steps
self.sample_rate = sample_rate
self.last_demo_step = -1
@rank_zero_only
@torch.no_grad()
def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx):
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
return
self.last_demo_step = trainer.global_step
demo_samples = module.diffusion.sample_size
if module.diffusion.pretransform is not None:
demo_samples = demo_samples // module.diffusion.pretransform.downsampling_ratio
noise = torch.randn([self.num_demos, module.diffusion.io_channels, demo_samples]).to(module.device)
try:
with torch.cuda.amp.autocast():
fakes = sample(module.diffusion_ema, noise, self.demo_steps, 0)
if module.diffusion.pretransform is not None:
fakes = module.diffusion.pretransform.decode(fakes)
# Put the demos together
fakes = rearrange(fakes, 'b d n -> d (b n)')
log_dict = {}
filename = f'demo_{trainer.global_step:08}.wav'
fakes = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
torchaudio.save(filename, fakes, self.sample_rate)
log_dict[f'demo'] = wandb.Audio(filename,
sample_rate=self.sample_rate,
caption=f'Reconstructed')
log_dict[f'demo_melspec_left'] = wandb.Image(audio_spectrogram_image(fakes))
trainer.logger.experiment.log(log_dict)
del fakes
except Exception as e:
print(f'{type(e).__name__}: {e}')
finally:
gc.collect()
torch.cuda.empty_cache()
class DiffusionCondTrainingWrapper(pl.LightningModule):
'''
Wrapper for training a conditional audio diffusion model.
'''
def __init__(
self,
model: ConditionedDiffusionModelWrapper,
lr: float = None,
mask_padding: bool = False,
mask_padding_dropout: float = 0.0,
use_ema: bool = True,
log_loss_info: bool = False,
optimizer_configs: dict = None,
pre_encoded: bool = False,
cfg_dropout_prob = 0.1,
timestep_sampler: tp.Literal["uniform", "logit_normal"] = "uniform",
):
super().__init__()
self.diffusion = model
if use_ema:
self.diffusion_ema = EMA(
self.diffusion.model,
beta=0.9999,
power=3/4,
update_every=1,
update_after_step=1,
include_online_model=False
)
else:
self.diffusion_ema = None
self.mask_padding = mask_padding
self.mask_padding_dropout = mask_padding_dropout
self.cfg_dropout_prob = cfg_dropout_prob
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
self.timestep_sampler = timestep_sampler
self.diffusion_objective = model.diffusion_objective
self.loss_modules = [
MSELoss("output",
"targets",
weight=1.0,
mask_key="padding_mask" if self.mask_padding else None,
name="mse_loss"
)
]
self.losses = MultiLoss(self.loss_modules)
self.log_loss_info = log_loss_info
assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config"
if optimizer_configs is None:
optimizer_configs = {
"diffusion": {
"optimizer": {
"type": "Adam",
"config": {
"lr": lr
}
}
}
}
else:
if lr is not None:
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.")
self.optimizer_configs = optimizer_configs
self.pre_encoded = pre_encoded
def configure_optimizers(self):
diffusion_opt_config = self.optimizer_configs['diffusion']
opt_diff = create_optimizer_from_config(diffusion_opt_config['optimizer'], self.diffusion.parameters())
if "scheduler" in diffusion_opt_config:
sched_diff = create_scheduler_from_config(diffusion_opt_config['scheduler'], opt_diff)
sched_diff_config = {
"scheduler": sched_diff,
"interval": "step"
}
return [opt_diff], [sched_diff_config]
return [opt_diff]
def training_step(self, batch, batch_idx):
reals, metadata = batch
p = Profiler()
if reals.ndim == 4 and reals.shape[0] == 1:
reals = reals[0]
loss_info = {}
diffusion_input = reals
if not self.pre_encoded:
loss_info["audio_reals"] = diffusion_input
p.tick("setup")
with torch.cuda.amp.autocast():
conditioning = self.diffusion.conditioner(metadata, self.device)
_, _, llm_loss = conditioning['t5']
# If mask_padding is on, randomly drop the padding masks to allow for learning silence padding
use_padding_mask = self.mask_padding and random.random() > self.mask_padding_dropout
# Create batch tensor of attention masks from the "mask" field of the metadata array
if use_padding_mask:
padding_masks = torch.stack([md["padding_mask"][0] for md in metadata], dim=0).to(self.device) # Shape (batch_size, sequence_length)
p.tick("conditioning")
if self.diffusion.pretransform is not None:
self.diffusion.pretransform.to(self.device)
if not self.pre_encoded:
with torch.cuda.amp.autocast() and torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
self.diffusion.pretransform.train(self.diffusion.pretransform.enable_grad)
diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
p.tick("pretransform")
# If mask_padding is on, interpolate the padding masks to the size of the pretransformed input
if use_padding_mask:
padding_masks = F.interpolate(padding_masks.unsqueeze(1).float(), size=diffusion_input.shape[2], mode="nearest").squeeze(1).bool()
else:
# Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
diffusion_input = diffusion_input / self.diffusion.pretransform.scale
if self.timestep_sampler == "uniform":
# Draw uniformly distributed continuous timesteps
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
elif self.timestep_sampler == "logit_normal":
t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device))
# Calculate the noise schedule parameters for those timesteps
if self.diffusion_objective == "v":
alphas, sigmas = get_alphas_sigmas(t)
elif self.diffusion_objective == "rectified_flow":
alphas, sigmas = 1-t, t
# Combine the ground truth data and the noise
alphas = alphas[:, None, None]
sigmas = sigmas[:, None, None]
noise = torch.randn_like(diffusion_input)
noised_inputs = diffusion_input * alphas + noise * sigmas
if self.diffusion_objective == "v":
targets = noise * alphas - diffusion_input * sigmas
elif self.diffusion_objective == "rectified_flow":
targets = noise - diffusion_input
p.tick("noise")
extra_args = {}
if use_padding_mask:
extra_args["mask"] = padding_masks
with torch.cuda.amp.autocast():
p.tick("amp")
output = self.diffusion(noised_inputs, t, cond=conditioning, cfg_dropout_prob = self.cfg_dropout_prob, **extra_args)
p.tick("diffusion")
loss_info.update({
"output": output,
"targets": targets,
"padding_mask": padding_masks if use_padding_mask else None,
})
loss, losses = self.losses(loss_info)
p.tick("loss")
if self.log_loss_info:
# Loss debugging logs
num_loss_buckets = 10
bucket_size = 1 / num_loss_buckets
loss_all = F.mse_loss(output, targets, reduction="none")
sigmas = rearrange(self.all_gather(sigmas), "w b c n -> (w b) c n").squeeze()
# gather loss_all across all GPUs
loss_all = rearrange(self.all_gather(loss_all), "w b c n -> (w b) c n")
# Bucket loss values based on corresponding sigma values, bucketing sigma values by bucket_size
loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)])
# Log bucketed losses with corresponding sigma bucket values, if it's not NaN
debug_log_dict = {
f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i])
}
self.log_dict(debug_log_dict)
log_dict = {
'train/loss': loss.detach() + llm_loss.detach(),
'train/std_data': diffusion_input.std(),
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr']
}
for loss_name, loss_value in losses.items():
log_dict[f"train/{loss_name}"] = loss_value.detach()
self.log_dict(log_dict, prog_bar=True, on_step=True)
p.tick("log")
#print(f"Profiler: {p}")
return loss + llm_loss
def on_before_zero_grad(self, *args, **kwargs):
if self.diffusion_ema is not None:
self.diffusion_ema.update()
def export_model(self, path, use_safetensors=False):
if self.diffusion_ema is not None:
self.diffusion.model = self.diffusion_ema.ema_model
if use_safetensors:
save_file(self.diffusion.state_dict(), path)
else:
torch.save({"state_dict": self.diffusion.state_dict()}, path)
class DiffusionCondDemoCallback(pl.Callback):
def __init__(self,
demo_every=2000,
num_demos=8,
sample_size=65536,
demo_steps=250,
sample_rate=48000,
demo_conditioning: tp.Optional[tp.Dict[str, tp.Any]] = {},
demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7],
demo_cond_from_batch: bool = False,
display_audio_cond: bool = False
):
super().__init__()
self.demo_every = demo_every
self.num_demos = num_demos
self.demo_samples = sample_size
self.demo_steps = demo_steps
self.sample_rate = sample_rate
self.last_demo_step = -1
self.demo_conditioning = demo_conditioning
self.demo_cfg_scales = demo_cfg_scales
# If true, the callback will use the metadata from the batch to generate the demo conditioning
self.demo_cond_from_batch = demo_cond_from_batch
# If true, the callback will display the audio conditioning
self.display_audio_cond = display_audio_cond
@rank_zero_only
@torch.no_grad()
def on_train_batch_end(self, trainer, module: DiffusionCondTrainingWrapper, outputs, batch, batch_idx):
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
return
module.eval()
print(f"Generating demo")
self.last_demo_step = trainer.global_step
demo_samples = self.demo_samples
demo_cond = self.demo_conditioning
if self.demo_cond_from_batch:
# Get metadata from the batch
demo_cond = batch[1][:self.num_demos]
if module.diffusion.pretransform is not None:
demo_samples = demo_samples // module.diffusion.pretransform.downsampling_ratio
noise = torch.randn([self.num_demos, module.diffusion.io_channels, demo_samples]).to(module.device)
try:
print("Getting conditioning")
with torch.cuda.amp.autocast():
conditioning = module.diffusion.conditioner(demo_cond, module.device)
cond_inputs = module.diffusion.get_conditioning_inputs(conditioning)
log_dict = {}
if self.display_audio_cond:
audio_inputs = torch.cat([cond["audio"] for cond in demo_cond], dim=0)
audio_inputs = rearrange(audio_inputs, 'b d n -> d (b n)')
filename = f'demo_audio_cond_{trainer.global_step:08}.wav'
audio_inputs = audio_inputs.to(torch.float32).mul(32767).to(torch.int16).cpu()
torchaudio.save(filename, audio_inputs, self.sample_rate)
log_dict[f'demo_audio_cond'] = wandb.Audio(filename, sample_rate=self.sample_rate, caption="Audio conditioning")
log_dict[f"demo_audio_cond_melspec_left"] = wandb.Image(audio_spectrogram_image(audio_inputs))
trainer.logger.experiment.log(log_dict)
for cfg_scale in self.demo_cfg_scales:
print(f"Generating demo for cfg scale {cfg_scale}")
with torch.cuda.amp.autocast():
model = module.diffusion_ema.model if module.diffusion_ema is not None else module.diffusion.model
if module.diffusion_objective == "v":
fakes = sample(model, noise, self.demo_steps, 0, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
elif module.diffusion_objective == "rectified_flow":
fakes = sample_discrete_euler(model, noise, self.demo_steps, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
if module.diffusion.pretransform is not None:
fakes = module.diffusion.pretransform.decode(fakes)
# Put the demos together
fakes = rearrange(fakes, 'b d n -> d (b n)')
log_dict = {}
filename = f'demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav'
fakes = fakes.div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
torchaudio.save(filename, fakes, self.sample_rate)
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename,
sample_rate=self.sample_rate,
caption=f'Reconstructed')
log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes))
trainer.logger.experiment.log(log_dict)
del fakes
except Exception as e:
raise e
finally:
gc.collect()
torch.cuda.empty_cache()
module.train()
class DiffusionCondInpaintTrainingWrapper(pl.LightningModule):
'''
Wrapper for training a conditional audio diffusion model.
'''
def __init__(
self,
model: ConditionedDiffusionModelWrapper,
lr: float = 1e-4,
max_mask_segments = 10,
log_loss_info: bool = False,
optimizer_configs: dict = None,
use_ema: bool = True,
pre_encoded: bool = False,
cfg_dropout_prob = 0.1,
timestep_sampler: tp.Literal["uniform", "logit_normal"] = "uniform",
):
super().__init__()
self.diffusion = model
self.use_ema = use_ema
if self.use_ema:
self.diffusion_ema = EMA(
self.diffusion.model,
beta=0.9999,
power=3/4,
update_every=1,
update_after_step=1,
include_online_model=False
)
else:
self.diffusion_ema = None
self.cfg_dropout_prob = cfg_dropout_prob
self.lr = lr
self.max_mask_segments = max_mask_segments
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
self.timestep_sampler = timestep_sampler
self.diffusion_objective = model.diffusion_objective
self.loss_modules = [
MSELoss("output",
"targets",
weight=1.0,
name="mse_loss"
)
]
self.losses = MultiLoss(self.loss_modules)
self.log_loss_info = log_loss_info
assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config"
if optimizer_configs is None:
optimizer_configs = {
"diffusion": {
"optimizer": {
"type": "Adam",
"config": {
"lr": lr
}
}
}
}
else:
if lr is not None:
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.")
self.optimizer_configs = optimizer_configs
self.pre_encoded = pre_encoded
def configure_optimizers(self):
diffusion_opt_config = self.optimizer_configs['diffusion']
opt_diff = create_optimizer_from_config(diffusion_opt_config['optimizer'], self.diffusion.parameters())
if "scheduler" in diffusion_opt_config:
sched_diff = create_scheduler_from_config(diffusion_opt_config['scheduler'], opt_diff)
sched_diff_config = {
"scheduler": sched_diff,
"interval": "step"
}
return [opt_diff], [sched_diff_config]
return [opt_diff]
def random_mask(self, sequence, max_mask_length):
b, _, sequence_length = sequence.size()
# Create a mask tensor for each batch element
masks = []
for i in range(b):
mask_type = random.randint(0, 2)
if mask_type == 0: # Random mask with multiple segments
num_segments = random.randint(1, self.max_mask_segments)
max_segment_length = max_mask_length // num_segments
segment_lengths = random.sample(range(1, max_segment_length + 1), num_segments)
mask = torch.ones((1, 1, sequence_length))
for length in segment_lengths:
mask_start = random.randint(0, sequence_length - length)
mask[:, :, mask_start:mask_start + length] = 0
elif mask_type == 1: # Full mask
mask = torch.zeros((1, 1, sequence_length))
elif mask_type == 2: # Causal mask
mask = torch.ones((1, 1, sequence_length))
mask_length = random.randint(1, max_mask_length)
mask[:, :, -mask_length:] = 0
mask = mask.to(sequence.device)
masks.append(mask)
# Concatenate the mask tensors into a single tensor
mask = torch.cat(masks, dim=0).to(sequence.device)
# Apply the mask to the sequence tensor for each batch element
masked_sequence = sequence * mask
return masked_sequence, mask
def training_step(self, batch, batch_idx):
reals, metadata = batch
p = Profiler()
if reals.ndim == 4 and reals.shape[0] == 1:
reals = reals[0]
loss_info = {}
diffusion_input = reals
if not self.pre_encoded:
loss_info["audio_reals"] = diffusion_input
p.tick("setup")
with torch.cuda.amp.autocast():
conditioning = self.diffusion.conditioner(metadata, self.device)
p.tick("conditioning")
if self.diffusion.pretransform is not None:
self.diffusion.pretransform.to(self.device)
if not self.pre_encoded:
with torch.cuda.amp.autocast() and torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
p.tick("pretransform")
# If mask_padding is on, interpolate the padding masks to the size of the pretransformed input
# if use_padding_mask:
# padding_masks = F.interpolate(padding_masks.unsqueeze(1).float(), size=diffusion_input.shape[2], mode="nearest").squeeze(1).bool()
else:
# Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
diffusion_input = diffusion_input / self.diffusion.pretransform.scale
# Max mask size is the full sequence length
max_mask_length = diffusion_input.shape[2]
# Create a mask of random length for a random slice of the input
masked_input, mask = self.random_mask(diffusion_input, max_mask_length)
conditioning['inpaint_mask'] = [mask]
conditioning['inpaint_masked_input'] = [masked_input]
if self.timestep_sampler == "uniform":
# Draw uniformly distributed continuous timesteps
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
elif self.timestep_sampler == "logit_normal":
t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device))
# Calculate the noise schedule parameters for those timesteps
if self.diffusion_objective == "v":
alphas, sigmas = get_alphas_sigmas(t)
elif self.diffusion_objective == "rectified_flow":
alphas, sigmas = 1-t, t
# Combine the ground truth data and the noise
alphas = alphas[:, None, None]
sigmas = sigmas[:, None, None]
noise = torch.randn_like(diffusion_input)
noised_inputs = diffusion_input * alphas + noise * sigmas
if self.diffusion_objective == "v":
targets = noise * alphas - diffusion_input * sigmas
elif self.diffusion_objective == "rectified_flow":
targets = noise - diffusion_input
p.tick("noise")
extra_args = {}
with torch.cuda.amp.autocast():
p.tick("amp")
output = self.diffusion(noised_inputs, t, cond=conditioning, cfg_dropout_prob = self.cfg_dropout_prob, **extra_args)
p.tick("diffusion")
loss_info.update({
"output": output,
"targets": targets,
})
loss, losses = self.losses(loss_info)
if self.log_loss_info:
# Loss debugging logs
num_loss_buckets = 10
bucket_size = 1 / num_loss_buckets
loss_all = F.mse_loss(output, targets, reduction="none")
sigmas = rearrange(self.all_gather(sigmas), "w b c n -> (w b) c n").squeeze()
# gather loss_all across all GPUs
loss_all = rearrange(self.all_gather(loss_all), "w b c n -> (w b) c n")
# Bucket loss values based on corresponding sigma values, bucketing sigma values by bucket_size
loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)])
# Log bucketed losses with corresponding sigma bucket values, if it's not NaN
debug_log_dict = {
f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i])
}
self.log_dict(debug_log_dict)
log_dict = {
'train/loss': loss.detach(),
'train/std_data': diffusion_input.std(),
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr']
}
for loss_name, loss_value in losses.items():
log_dict[f"train/{loss_name}"] = loss_value.detach()
self.log_dict(log_dict, prog_bar=True, on_step=True)
p.tick("log")
#print(f"Profiler: {p}")
return loss
def on_before_zero_grad(self, *args, **kwargs):
if self.diffusion_ema is not None:
self.diffusion_ema.update()
def export_model(self, path, use_safetensors=False):
if self.diffusion_ema is not None:
self.diffusion.model = self.diffusion_ema.ema_model
if use_safetensors:
save_file(self.diffusion.state_dict(), path)
else:
torch.save({"state_dict": self.diffusion.state_dict()}, path)
class DiffusionCondInpaintDemoCallback(pl.Callback):
def __init__(
self,
demo_dl,
demo_every=2000,
demo_steps=250,
sample_size=65536,
sample_rate=48000,
demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7]
):
super().__init__()
self.demo_every = demo_every
self.demo_steps = demo_steps
self.demo_samples = sample_size
self.demo_dl = iter(demo_dl)
self.sample_rate = sample_rate
self.demo_cfg_scales = demo_cfg_scales
self.last_demo_step = -1
@rank_zero_only
@torch.no_grad()
def on_train_batch_end(self, trainer, module: DiffusionCondTrainingWrapper, outputs, batch, batch_idx):
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
return
self.last_demo_step = trainer.global_step
try:
log_dict = {}
demo_reals, metadata = next(self.demo_dl)
# Remove extra dimension added by WebDataset
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
demo_reals = demo_reals[0]
demo_reals = demo_reals.to(module.device)
if not module.pre_encoded:
# Log the real audio
log_dict[f'demo_reals_melspec_left'] = wandb.Image(audio_spectrogram_image(rearrange(demo_reals, "b d n -> d (b n)").mul(32767).to(torch.int16).cpu()))
# log_dict[f'demo_reals'] = wandb.Audio(rearrange(demo_reals, "b d n -> d (b n)").mul(32767).to(torch.int16).cpu(), sample_rate=self.sample_rate, caption="demo reals")
if module.diffusion.pretransform is not None:
module.diffusion.pretransform.to(module.device)
with torch.cuda.amp.autocast():
demo_reals = module.diffusion.pretransform.encode(demo_reals)
demo_samples = demo_reals.shape[2]
# Get conditioning
conditioning = module.diffusion.conditioner(metadata, module.device)
masked_input, mask = module.random_mask(demo_reals, demo_reals.shape[2])
conditioning['inpaint_mask'] = [mask]
conditioning['inpaint_masked_input'] = [masked_input]
if module.diffusion.pretransform is not None:
log_dict[f'demo_masked_input'] = wandb.Image(tokens_spectrogram_image(masked_input.cpu()))
else:
log_dict[f'demo_masked_input'] = wandb.Image(audio_spectrogram_image(rearrange(masked_input, "b c t -> c (b t)").mul(32767).to(torch.int16).cpu()))
cond_inputs = module.diffusion.get_conditioning_inputs(conditioning)
noise = torch.randn([demo_reals.shape[0], module.diffusion.io_channels, demo_samples]).to(module.device)
trainer.logger.experiment.log(log_dict)
for cfg_scale in self.demo_cfg_scales:
model = module.diffusion_ema.model if module.diffusion_ema is not None else module.diffusion.model
print(f"Generating demo for cfg scale {cfg_scale}")
if module.diffusion_objective == "v":
fakes = sample(model, noise, self.demo_steps, 0, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
elif module.diffusion_objective == "rectified_flow":
fakes = sample_discrete_euler(model, noise, self.demo_steps, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
if module.diffusion.pretransform is not None:
with torch.cuda.amp.autocast():
fakes = module.diffusion.pretransform.decode(fakes)
# Put the demos together
fakes = rearrange(fakes, 'b d n -> d (b n)')
log_dict = {}
filename = f'demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav'
fakes = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
torchaudio.save(filename, fakes, self.sample_rate)
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename,
sample_rate=self.sample_rate,
caption=f'Reconstructed')
log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes))
trainer.logger.experiment.log(log_dict)
except Exception as e:
print(f'{type(e).__name__}: {e}')
raise e
class DiffusionAutoencoderTrainingWrapper(pl.LightningModule):
'''
Wrapper for training a diffusion autoencoder
'''
def __init__(
self,
model: DiffusionAutoencoder,
lr: float = 1e-4,
ema_copy = None,
use_reconstruction_loss: bool = False
):
super().__init__()
self.diffae = model
self.diffae_ema = EMA(
self.diffae,
ema_model=ema_copy,
beta=0.9999,
power=3/4,
update_every=1,
update_after_step=1,
include_online_model=False
)
self.lr = lr
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
loss_modules = [
MSELoss("v",
"targets",
weight=1.0,
name="mse_loss"
)
]
if model.bottleneck is not None:
# TODO: Use loss config for configurable bottleneck weights and reconstruction losses
loss_modules += create_loss_modules_from_bottleneck(model.bottleneck, {})
self.use_reconstruction_loss = use_reconstruction_loss
if use_reconstruction_loss:
scales = [2048, 1024, 512, 256, 128, 64, 32]
hop_sizes = []
win_lengths = []
overlap = 0.75
for s in scales:
hop_sizes.append(int(s * (1 - overlap)))
win_lengths.append(s)
sample_rate = model.sample_rate
stft_loss_args = {
"fft_sizes": scales,
"hop_sizes": hop_sizes,
"win_lengths": win_lengths,
"perceptual_weighting": True
}
out_channels = model.out_channels
if model.pretransform is not None:
out_channels = model.pretransform.io_channels
if out_channels == 2:
self.sdstft = auraloss.freq.SumAndDifferenceSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
else:
self.sdstft = auraloss.freq.MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
loss_modules.append(
AuralossLoss(self.sdstft, 'audio_reals', 'audio_pred', name='mrstft_loss', weight=0.1), # Reconstruction loss
)
self.losses = MultiLoss(loss_modules)
def configure_optimizers(self):
return optim.Adam([*self.diffae.parameters()], lr=self.lr)
def training_step(self, batch, batch_idx):
reals = batch[0]
if reals.ndim == 4 and reals.shape[0] == 1:
reals = reals[0]
loss_info = {}
loss_info["audio_reals"] = reals
if self.diffae.pretransform is not None:
with torch.no_grad():
reals = self.diffae.pretransform.encode(reals)
loss_info["reals"] = reals
#Encode reals, skipping the pretransform since it was already applied
latents, encoder_info = self.diffae.encode(reals, return_info=True, skip_pretransform=True)
loss_info["latents"] = latents
loss_info.update(encoder_info)
if self.diffae.decoder is not None:
latents = self.diffae.decoder(latents)
# Upsample latents to match diffusion length
if latents.shape[2] != reals.shape[2]:
latents = F.interpolate(latents, size=reals.shape[2], mode='nearest')
loss_info["latents_upsampled"] = latents
# Draw uniformly distributed continuous timesteps
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
# Calculate the noise schedule parameters for those timesteps
alphas, sigmas = get_alphas_sigmas(t)
# Combine the ground truth data and the noise
alphas = alphas[:, None, None]
sigmas = sigmas[:, None, None]
noise = torch.randn_like(reals)
noised_reals = reals * alphas + noise * sigmas
targets = noise * alphas - reals * sigmas
with torch.cuda.amp.autocast():
v = self.diffae.diffusion(noised_reals, t, input_concat_cond=latents)
loss_info.update({
"v": v,
"targets": targets
})
if self.use_reconstruction_loss:
pred = noised_reals * alphas - v * sigmas
loss_info["pred"] = pred
if self.diffae.pretransform is not None:
pred = self.diffae.pretransform.decode(pred)
loss_info["audio_pred"] = pred
loss, losses = self.losses(loss_info)
log_dict = {
'train/loss': loss.detach(),
'train/std_data': reals.std(),
'train/latent_std': latents.std(),
}
for loss_name, loss_value in losses.items():
log_dict[f"train/{loss_name}"] = loss_value.detach()
self.log_dict(log_dict, prog_bar=True, on_step=True)
return loss
def on_before_zero_grad(self, *args, **kwargs):
self.diffae_ema.update()
def export_model(self, path, use_safetensors=False):
model = self.diffae_ema.ema_model
if use_safetensors:
save_file(model.state_dict(), path)
else:
torch.save({"state_dict": model.state_dict()}, path)
class DiffusionAutoencoderDemoCallback(pl.Callback):
def __init__(
self,
demo_dl,
demo_every=2000,
demo_steps=250,
sample_size=65536,
sample_rate=48000
):
super().__init__()
self.demo_every = demo_every
self.demo_steps = demo_steps
self.demo_samples = sample_size
self.demo_dl = iter(demo_dl)
self.sample_rate = sample_rate
self.last_demo_step = -1
@rank_zero_only
@torch.no_grad()
def on_train_batch_end(self, trainer, module: DiffusionAutoencoderTrainingWrapper, outputs, batch, batch_idx):
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
return
self.last_demo_step = trainer.global_step
demo_reals, _ = next(self.demo_dl)
# Remove extra dimension added by WebDataset
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
demo_reals = demo_reals[0]
encoder_input = demo_reals
encoder_input = encoder_input.to(module.device)
demo_reals = demo_reals.to(module.device)
with torch.no_grad() and torch.cuda.amp.autocast():
latents = module.diffae_ema.ema_model.encode(encoder_input).float()
fakes = module.diffae_ema.ema_model.decode(latents, steps=self.demo_steps)
#Interleave reals and fakes
reals_fakes = rearrange([demo_reals, fakes], 'i b d n -> (b i) d n')
# Put the demos together
reals_fakes = rearrange(reals_fakes, 'b d n -> d (b n)')
log_dict = {}
filename = f'recon_{trainer.global_step:08}.wav'
reals_fakes = reals_fakes.to(torch.float32).div(torch.max(torch.abs(reals_fakes))).mul(32767).to(torch.int16).cpu()
torchaudio.save(filename, reals_fakes, self.sample_rate)
log_dict[f'recon'] = wandb.Audio(filename,
sample_rate=self.sample_rate,
caption=f'Reconstructed')
log_dict[f'embeddings_3dpca'] = pca_point_cloud(latents)
log_dict[f'embeddings_spec'] = wandb.Image(tokens_spectrogram_image(latents))
log_dict[f'recon_melspec_left'] = wandb.Image(audio_spectrogram_image(reals_fakes))
if module.diffae_ema.ema_model.pretransform is not None:
with torch.no_grad() and torch.cuda.amp.autocast():
initial_latents = module.diffae_ema.ema_model.pretransform.encode(encoder_input)
first_stage_fakes = module.diffae_ema.ema_model.pretransform.decode(initial_latents)
first_stage_fakes = rearrange(first_stage_fakes, 'b d n -> d (b n)')
first_stage_fakes = first_stage_fakes.to(torch.float32).mul(32767).to(torch.int16).cpu()
first_stage_filename = f'first_stage_{trainer.global_step:08}.wav'
torchaudio.save(first_stage_filename, first_stage_fakes, self.sample_rate)
log_dict[f'first_stage_latents'] = wandb.Image(tokens_spectrogram_image(initial_latents))
log_dict[f'first_stage'] = wandb.Audio(first_stage_filename,
sample_rate=self.sample_rate,
caption=f'First Stage Reconstructed')
log_dict[f'first_stage_melspec_left'] = wandb.Image(audio_spectrogram_image(first_stage_fakes))
trainer.logger.experiment.log(log_dict)
def create_source_mixture(reals, num_sources=2):
# Create a fake mixture source by mixing elements from the training batch together with random offsets
source = torch.zeros_like(reals)
for i in range(reals.shape[0]):
sources_added = 0
js = list(range(reals.shape[0]))
random.shuffle(js)
for j in js:
if i == j or (i != j and sources_added < num_sources):
# Randomly offset the mixed element between 0 and the length of the source
seq_len = reals.shape[2]
offset = random.randint(0, seq_len-1)
source[i, :, offset:] += reals[j, :, :-offset]
if i == j:
# If this is the real one, shift the reals as well to ensure alignment
new_reals = torch.zeros_like(reals[i])
new_reals[:, offset:] = reals[i, :, :-offset]
reals[i] = new_reals
sources_added += 1
return source
class DiffusionPriorTrainingWrapper(pl.LightningModule):
'''
Wrapper for training a diffusion prior for inverse problems
Prior types:
mono_stereo: The prior is conditioned on a mono version of the audio to generate a stereo version
'''
def __init__(
self,
model: ConditionedDiffusionModelWrapper,
lr: float = 1e-4,
ema_copy = None,
prior_type: PriorType = PriorType.MonoToStereo,
use_reconstruction_loss: bool = False,
log_loss_info: bool = False,
):
super().__init__()
self.diffusion = model
self.diffusion_ema = EMA(
self.diffusion,
ema_model=ema_copy,
beta=0.9999,
power=3/4,
update_every=1,
update_after_step=1,
include_online_model=False
)
self.lr = lr
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
self.log_loss_info = log_loss_info
loss_modules = [
MSELoss("v",
"targets",
weight=1.0,
name="mse_loss"
)
]
self.use_reconstruction_loss = use_reconstruction_loss
if use_reconstruction_loss:
scales = [2048, 1024, 512, 256, 128, 64, 32]
hop_sizes = []
win_lengths = []
overlap = 0.75
for s in scales:
hop_sizes.append(int(s * (1 - overlap)))
win_lengths.append(s)
sample_rate = model.sample_rate
stft_loss_args = {
"fft_sizes": scales,
"hop_sizes": hop_sizes,
"win_lengths": win_lengths,
"perceptual_weighting": True
}
out_channels = model.io_channels
self.audio_out_channels = out_channels
if model.pretransform is not None:
out_channels = model.pretransform.io_channels
if self.audio_out_channels == 2:
self.sdstft = auraloss.freq.SumAndDifferenceSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
self.lrstft = auraloss.freq.MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
# Add left and right channel reconstruction losses in addition to the sum and difference
self.loss_modules += [
AuralossLoss(self.lrstft, 'audio_reals_left', 'pred_left', name='stft_loss_left', weight=0.05),
AuralossLoss(self.lrstft, 'audio_reals_right', 'pred_right', name='stft_loss_right', weight=0.05),
]
else:
self.sdstft = auraloss.freq.MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
self.loss_modules.append(
AuralossLoss(self.sdstft, 'audio_reals', 'audio_pred', name='mrstft_loss', weight=0.1), # Reconstruction loss
)
self.losses = MultiLoss(loss_modules)
self.prior_type = prior_type
def configure_optimizers(self):
return optim.Adam([*self.diffusion.parameters()], lr=self.lr)
def training_step(self, batch, batch_idx):
reals, metadata = batch
if reals.ndim == 4 and reals.shape[0] == 1:
reals = reals[0]
loss_info = {}
loss_info["audio_reals"] = reals
if self.prior_type == PriorType.MonoToStereo:
source = reals.mean(dim=1, keepdim=True).repeat(1, reals.shape[1], 1).to(self.device)
loss_info["audio_reals_mono"] = source
else:
raise ValueError(f"Unknown prior type {self.prior_type}")
if self.diffusion.pretransform is not None:
with torch.no_grad():
reals = self.diffusion.pretransform.encode(reals)
if self.prior_type in [PriorType.MonoToStereo]:
source = self.diffusion.pretransform.encode(source)
if self.diffusion.conditioner is not None:
with torch.cuda.amp.autocast():
conditioning = self.diffusion.conditioner(metadata, self.device)
else:
conditioning = {}
loss_info["reals"] = reals
# Draw uniformly distributed continuous timesteps
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
# Calculate the noise schedule parameters for those timesteps
alphas, sigmas = get_alphas_sigmas(t)
# Combine the ground truth data and the noise
alphas = alphas[:, None, None]
sigmas = sigmas[:, None, None]
noise = torch.randn_like(reals)
noised_reals = reals * alphas + noise * sigmas
targets = noise * alphas - reals * sigmas
with torch.cuda.amp.autocast():
conditioning['source'] = [source]
v = self.diffusion(noised_reals, t, cond=conditioning, cfg_dropout_prob = 0.1)
loss_info.update({
"v": v,
"targets": targets
})
if self.use_reconstruction_loss:
pred = noised_reals * alphas - v * sigmas
loss_info["pred"] = pred
if self.diffusion.pretransform is not None:
pred = self.diffusion.pretransform.decode(pred)
loss_info["audio_pred"] = pred
if self.audio_out_channels == 2:
loss_info["pred_left"] = pred[:, 0:1, :]
loss_info["pred_right"] = pred[:, 1:2, :]
loss_info["audio_reals_left"] = loss_info["audio_reals"][:, 0:1, :]
loss_info["audio_reals_right"] = loss_info["audio_reals"][:, 1:2, :]
loss, losses = self.losses(loss_info)
if self.log_loss_info:
# Loss debugging logs
num_loss_buckets = 10
bucket_size = 1 / num_loss_buckets
loss_all = F.mse_loss(v, targets, reduction="none")
sigmas = rearrange(self.all_gather(sigmas), "w b c n -> (w b) c n").squeeze()
# gather loss_all across all GPUs
loss_all = rearrange(self.all_gather(loss_all), "w b c n -> (w b) c n")
# Bucket loss values based on corresponding sigma values, bucketing sigma values by bucket_size
loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)])
# Log bucketed losses with corresponding sigma bucket values, if it's not NaN
debug_log_dict = {
f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i])
}
self.log_dict(debug_log_dict)
log_dict = {
'train/loss': loss.detach(),
'train/std_data': reals.std()
}
for loss_name, loss_value in losses.items():
log_dict[f"train/{loss_name}"] = loss_value.detach()
self.log_dict(log_dict, prog_bar=True, on_step=True)
return loss
def on_before_zero_grad(self, *args, **kwargs):
self.diffusion_ema.update()
def export_model(self, path, use_safetensors=False):
#model = self.diffusion_ema.ema_model
model = self.diffusion
if use_safetensors:
save_file(model.state_dict(), path)
else:
torch.save({"state_dict": model.state_dict()}, path)
class DiffusionPriorDemoCallback(pl.Callback):
def __init__(
self,
demo_dl,
demo_every=2000,
demo_steps=250,
sample_size=65536,
sample_rate=48000
):
super().__init__()
self.demo_every = demo_every
self.demo_steps = demo_steps
self.demo_samples = sample_size
self.demo_dl = iter(demo_dl)
self.sample_rate = sample_rate
self.last_demo_step = -1
@rank_zero_only
@torch.no_grad()
def on_train_batch_end(self, trainer, module: DiffusionAutoencoderTrainingWrapper, outputs, batch, batch_idx):
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
return
self.last_demo_step = trainer.global_step
demo_reals, metadata = next(self.demo_dl)
# Remove extra dimension added by WebDataset
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
demo_reals = demo_reals[0]
demo_reals = demo_reals.to(module.device)
encoder_input = demo_reals
if module.diffusion.conditioner is not None:
with torch.cuda.amp.autocast():
conditioning_tensors = module.diffusion.conditioner(metadata, module.device)
else:
conditioning_tensors = {}
with torch.no_grad() and torch.cuda.amp.autocast():
if module.prior_type == PriorType.MonoToStereo and encoder_input.shape[1] > 1:
source = encoder_input.mean(dim=1, keepdim=True).repeat(1, encoder_input.shape[1], 1).to(module.device)
if module.diffusion.pretransform is not None:
encoder_input = module.diffusion.pretransform.encode(encoder_input)
source_input = module.diffusion.pretransform.encode(source)
else:
source_input = source
conditioning_tensors['source'] = [source_input]
fakes = sample(module.diffusion_ema.model, torch.randn_like(encoder_input), self.demo_steps, 0, cond=conditioning_tensors)
if module.diffusion.pretransform is not None:
fakes = module.diffusion.pretransform.decode(fakes)
#Interleave reals and fakes
reals_fakes = rearrange([demo_reals, fakes], 'i b d n -> (b i) d n')
# Put the demos together
reals_fakes = rearrange(reals_fakes, 'b d n -> d (b n)')
log_dict = {}
filename = f'recon_{trainer.global_step:08}.wav'
reals_fakes = reals_fakes.to(torch.float32).div(torch.max(torch.abs(reals_fakes))).mul(32767).to(torch.int16).cpu()
torchaudio.save(filename, reals_fakes, self.sample_rate)
log_dict[f'recon'] = wandb.Audio(filename,
sample_rate=self.sample_rate,
caption=f'Reconstructed')
log_dict[f'recon_melspec_left'] = wandb.Image(audio_spectrogram_image(reals_fakes))
#Log the source
filename = f'source_{trainer.global_step:08}.wav'
source = rearrange(source, 'b d n -> d (b n)')
source = source.to(torch.float32).mul(32767).to(torch.int16).cpu()
torchaudio.save(filename, source, self.sample_rate)
log_dict[f'source'] = wandb.Audio(filename,
sample_rate=self.sample_rate,
caption=f'Source')
log_dict[f'source_melspec_left'] = wandb.Image(audio_spectrogram_image(source))
trainer.logger.experiment.log(log_dict)