Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,512 Bytes
9172422 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import argparse
import json
import torch
from torch.nn.parameter import Parameter
from stable_audio_tools.models import create_model_from_config
if __name__ == '__main__':
args = argparse.ArgumentParser()
args.add_argument('--model-config', type=str, default=None)
args.add_argument('--ckpt-path', type=str, default=None)
args.add_argument('--name', type=str, default='exported_model')
args.add_argument('--use-safetensors', action='store_true')
args = args.parse_args()
with open(args.model_config) as f:
model_config = json.load(f)
model = create_model_from_config(model_config)
model_type = model_config.get('model_type', None)
assert model_type is not None, 'model_type must be specified in model config'
training_config = model_config.get('training', None)
if model_type == 'autoencoder':
from stable_audio_tools.training.autoencoders import AutoencoderTrainingWrapper
ema_copy = None
if training_config.get("use_ema", False):
from stable_audio_tools.models.factory import create_model_from_config
ema_copy = create_model_from_config(model_config)
ema_copy = create_model_from_config(model_config) # I don't know why this needs to be called twice but it broke when I called it once
# Copy each weight to the ema copy
for name, param in model.state_dict().items():
if isinstance(param, Parameter):
# backwards compatibility for serialized parameters
param = param.data
ema_copy.state_dict()[name].copy_(param)
use_ema = training_config.get("use_ema", False)
training_wrapper = AutoencoderTrainingWrapper.load_from_checkpoint(
args.ckpt_path,
autoencoder=model,
strict=False,
loss_config=training_config["loss_configs"],
use_ema=training_config["use_ema"],
ema_copy=ema_copy if use_ema else None
)
elif model_type == 'diffusion_uncond':
from stable_audio_tools.training.diffusion import DiffusionUncondTrainingWrapper
training_wrapper = DiffusionUncondTrainingWrapper.load_from_checkpoint(args.ckpt_path, model=model, strict=False)
elif model_type == 'diffusion_autoencoder':
from stable_audio_tools.training.diffusion import DiffusionAutoencoderTrainingWrapper
ema_copy = create_model_from_config(model_config)
for name, param in model.state_dict().items():
if isinstance(param, Parameter):
# backwards compatibility for serialized parameters
param = param.data
ema_copy.state_dict()[name].copy_(param)
training_wrapper = DiffusionAutoencoderTrainingWrapper.load_from_checkpoint(args.ckpt_path, model=model, ema_copy=ema_copy, strict=False)
elif model_type == 'diffusion_cond':
from stable_audio_tools.training.diffusion import DiffusionCondTrainingWrapper
use_ema = training_config.get("use_ema", True)
training_wrapper = DiffusionCondTrainingWrapper.load_from_checkpoint(
args.ckpt_path,
model=model,
use_ema=use_ema,
lr=training_config.get("learning_rate", None),
optimizer_configs=training_config.get("optimizer_configs", None),
strict=False
)
elif model_type == 'diffusion_cond_inpaint':
from stable_audio_tools.training.diffusion import DiffusionCondInpaintTrainingWrapper
training_wrapper = DiffusionCondInpaintTrainingWrapper.load_from_checkpoint(args.ckpt_path, model=model, strict=False)
elif model_type == 'diffusion_prior':
from stable_audio_tools.training.diffusion import DiffusionPriorTrainingWrapper
ema_copy = create_model_from_config(model_config)
for name, param in model.state_dict().items():
if isinstance(param, Parameter):
# backwards compatibility for serialized parameters
param = param.data
ema_copy.state_dict()[name].copy_(param)
training_wrapper = DiffusionPriorTrainingWrapper.load_from_checkpoint(args.ckpt_path, model=model, strict=False, ema_copy=ema_copy)
elif model_type == 'lm':
from stable_audio_tools.training.lm import AudioLanguageModelTrainingWrapper
ema_copy = None
if training_config.get("use_ema", False):
ema_copy = create_model_from_config(model_config)
for name, param in model.state_dict().items():
if isinstance(param, Parameter):
# backwards compatibility for serialized parameters
param = param.data
ema_copy.state_dict()[name].copy_(param)
training_wrapper = AudioLanguageModelTrainingWrapper.load_from_checkpoint(
args.ckpt_path,
model=model,
strict=False,
ema_copy=ema_copy,
optimizer_configs=training_config.get("optimizer_configs", None)
)
else:
raise ValueError(f"Unknown model type {model_type}")
print(f"Loaded model from {args.ckpt_path}")
if args.use_safetensors:
ckpt_path = f"{args.name}.safetensors"
else:
ckpt_path = f"{args.name}.ckpt"
training_wrapper.export_model(ckpt_path, use_safetensors=args.use_safetensors)
print(f"Exported model to {ckpt_path}") |