File size: 5,512 Bytes
9172422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
import json
import torch
from torch.nn.parameter import Parameter
from stable_audio_tools.models import create_model_from_config

if __name__ == '__main__':
    args = argparse.ArgumentParser()
    args.add_argument('--model-config', type=str, default=None)
    args.add_argument('--ckpt-path', type=str, default=None)
    args.add_argument('--name', type=str, default='exported_model')
    args.add_argument('--use-safetensors', action='store_true')

    args = args.parse_args()

    with open(args.model_config) as f:
        model_config = json.load(f)
    
    model = create_model_from_config(model_config)
    
    model_type = model_config.get('model_type', None)

    assert model_type is not None, 'model_type must be specified in model config'

    training_config = model_config.get('training', None)

    if model_type == 'autoencoder':
        from stable_audio_tools.training.autoencoders import AutoencoderTrainingWrapper
        
        ema_copy = None

        if training_config.get("use_ema", False):
            from stable_audio_tools.models.factory import create_model_from_config
            ema_copy = create_model_from_config(model_config)
            ema_copy = create_model_from_config(model_config) # I don't know why this needs to be called twice but it broke when I called it once
        
            # Copy each weight to the ema copy
            for name, param in model.state_dict().items():
                if isinstance(param, Parameter):
                    # backwards compatibility for serialized parameters
                    param = param.data
                ema_copy.state_dict()[name].copy_(param)

        use_ema = training_config.get("use_ema", False)

        training_wrapper = AutoencoderTrainingWrapper.load_from_checkpoint(
            args.ckpt_path, 
            autoencoder=model, 
            strict=False,
            loss_config=training_config["loss_configs"],
            use_ema=training_config["use_ema"],
            ema_copy=ema_copy if use_ema else None
        )
    elif model_type == 'diffusion_uncond':
        from stable_audio_tools.training.diffusion import DiffusionUncondTrainingWrapper
        training_wrapper = DiffusionUncondTrainingWrapper.load_from_checkpoint(args.ckpt_path, model=model, strict=False)

    elif model_type == 'diffusion_autoencoder':
        from stable_audio_tools.training.diffusion import DiffusionAutoencoderTrainingWrapper

        ema_copy = create_model_from_config(model_config)
        
        for name, param in model.state_dict().items():
            if isinstance(param, Parameter):
                # backwards compatibility for serialized parameters
                param = param.data
            ema_copy.state_dict()[name].copy_(param)

        training_wrapper = DiffusionAutoencoderTrainingWrapper.load_from_checkpoint(args.ckpt_path, model=model, ema_copy=ema_copy, strict=False)
    elif model_type == 'diffusion_cond':
        from stable_audio_tools.training.diffusion import DiffusionCondTrainingWrapper
        
        use_ema = training_config.get("use_ema", True)
        
        training_wrapper = DiffusionCondTrainingWrapper.load_from_checkpoint(
            args.ckpt_path, 
            model=model, 
            use_ema=use_ema, 
            lr=training_config.get("learning_rate", None),
            optimizer_configs=training_config.get("optimizer_configs", None),
            strict=False
        )
    elif model_type == 'diffusion_cond_inpaint':
        from stable_audio_tools.training.diffusion import DiffusionCondInpaintTrainingWrapper
        training_wrapper = DiffusionCondInpaintTrainingWrapper.load_from_checkpoint(args.ckpt_path, model=model, strict=False)
    elif model_type == 'diffusion_prior':
        from stable_audio_tools.training.diffusion import DiffusionPriorTrainingWrapper

        ema_copy = create_model_from_config(model_config)
        
        for name, param in model.state_dict().items():
            if isinstance(param, Parameter):
                # backwards compatibility for serialized parameters
                param = param.data
            ema_copy.state_dict()[name].copy_(param)

        training_wrapper = DiffusionPriorTrainingWrapper.load_from_checkpoint(args.ckpt_path, model=model, strict=False, ema_copy=ema_copy)
    elif model_type == 'lm':
        from stable_audio_tools.training.lm import AudioLanguageModelTrainingWrapper

        ema_copy = None

        if training_config.get("use_ema", False):

            ema_copy = create_model_from_config(model_config)

            for name, param in model.state_dict().items():
                if isinstance(param, Parameter):
                    # backwards compatibility for serialized parameters
                    param = param.data
                ema_copy.state_dict()[name].copy_(param)

        training_wrapper = AudioLanguageModelTrainingWrapper.load_from_checkpoint(
            args.ckpt_path, 
            model=model, 
            strict=False, 
            ema_copy=ema_copy,
            optimizer_configs=training_config.get("optimizer_configs", None)
        )

    else:
        raise ValueError(f"Unknown model type {model_type}")
    
    print(f"Loaded model from {args.ckpt_path}")

    if args.use_safetensors:
        ckpt_path = f"{args.name}.safetensors"
    else:
        ckpt_path = f"{args.name}.ckpt"

    training_wrapper.export_model(ckpt_path, use_safetensors=args.use_safetensors)

    print(f"Exported model to {ckpt_path}")