File size: 4,214 Bytes
9172422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import torch
import os

def get_rank():
    """Get rank of current process."""
    
    print(os.environ.keys())

    if "SLURM_PROCID" in os.environ:
        return int(os.environ["SLURM_PROCID"])

    if not torch.distributed.is_available() or not torch.distributed.is_initialized():
        return 0
    
    return torch.distributed.get_rank()

class InverseLR(torch.optim.lr_scheduler._LRScheduler):
    """Implements an inverse decay learning rate schedule with an optional exponential
    warmup. When last_epoch=-1, sets initial lr as lr.
    inv_gamma is the number of steps/epochs required for the learning rate to decay to
    (1 / 2)**power of its original value.
    Args:
        optimizer (Optimizer): Wrapped optimizer.
        inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
        power (float): Exponential factor of learning rate decay. Default: 1.
        warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
            Default: 0.
        final_lr (float): The final learning rate. Default: 0.
        last_epoch (int): The index of last epoch. Default: -1.
        verbose (bool): If ``True``, prints a message to stdout for
            each update. Default: ``False``.
    """

    def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., final_lr=0.,
                 last_epoch=-1, verbose=False):
        self.inv_gamma = inv_gamma
        self.power = power
        if not 0. <= warmup < 1:
            raise ValueError('Invalid value for warmup')
        self.warmup = warmup
        self.final_lr = final_lr
        super().__init__(optimizer, last_epoch, verbose)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            import warnings
            warnings.warn("To get the last learning rate computed by the scheduler, "
                          "please use `get_last_lr()`.")

        return self._get_closed_form_lr()

    def _get_closed_form_lr(self):
        warmup = 1 - self.warmup ** (self.last_epoch + 1)
        lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
        return [warmup * max(self.final_lr, base_lr * lr_mult)
                for base_lr in self.base_lrs]

def copy_state_dict(model, state_dict):
    """Load state_dict to model, but only for keys that match exactly.

    Args:
        model (nn.Module): model to load state_dict.
        state_dict (OrderedDict): state_dict to load.
    """
    model_state_dict = model.state_dict()
    for key in state_dict:
        if key in model_state_dict and state_dict[key].shape == model_state_dict[key].shape:
            if isinstance(state_dict[key], torch.nn.Parameter):
                # backwards compatibility for serialized parameters
                state_dict[key] = state_dict[key].data
            model_state_dict[key] = state_dict[key]
        
    x, y = model.load_state_dict(model_state_dict, strict=False)
    print('---------------------')
    print(x)
    print(y)

def create_optimizer_from_config(optimizer_config, parameters):
    """Create optimizer from config.

    Args:
        parameters (iterable): parameters to optimize.
        optimizer_config (dict): optimizer config.

    Returns:
        torch.optim.Optimizer: optimizer.
    """

    optimizer_type = optimizer_config["type"]

    if optimizer_type == "FusedAdam":
        from deepspeed.ops.adam import FusedAdam
        optimizer = FusedAdam(parameters, **optimizer_config["config"])
    else:
        optimizer_fn = getattr(torch.optim, optimizer_type)
        optimizer = optimizer_fn(parameters, **optimizer_config["config"])
    return optimizer

def create_scheduler_from_config(scheduler_config, optimizer):
    """Create scheduler from config.

    Args:
        scheduler_config (dict): scheduler config.
        optimizer (torch.optim.Optimizer): optimizer.

    Returns:
        torch.optim.lr_scheduler._LRScheduler: scheduler.
    """
    if scheduler_config["type"] == "InverseLR":
        scheduler_fn = InverseLR
    else:
        scheduler_fn = getattr(torch.optim.lr_scheduler, scheduler_config["type"])
    scheduler = scheduler_fn(optimizer, **scheduler_config["config"])
    return scheduler