|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers import BertTokenizer, EncoderDecoderModel, Seq2SeqTrainer, Seq2SeqTrainingArguments |
|
from transformers.testing_utils import TestCasePlus, require_torch, slow |
|
from transformers.utils import is_datasets_available |
|
|
|
|
|
if is_datasets_available(): |
|
import datasets |
|
|
|
|
|
class Seq2seqTrainerTester(TestCasePlus): |
|
@slow |
|
@require_torch |
|
def test_finetune_bert2bert(self): |
|
bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny") |
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
|
|
bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size |
|
bert2bert.config.eos_token_id = tokenizer.sep_token_id |
|
bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id |
|
bert2bert.config.max_length = 128 |
|
|
|
train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]") |
|
val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]") |
|
|
|
train_dataset = train_dataset.select(range(32)) |
|
val_dataset = val_dataset.select(range(16)) |
|
|
|
batch_size = 4 |
|
|
|
def _map_to_encoder_decoder_inputs(batch): |
|
|
|
inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512) |
|
outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128) |
|
batch["input_ids"] = inputs.input_ids |
|
batch["attention_mask"] = inputs.attention_mask |
|
|
|
batch["decoder_input_ids"] = outputs.input_ids |
|
batch["labels"] = outputs.input_ids.copy() |
|
batch["labels"] = [ |
|
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] |
|
] |
|
batch["decoder_attention_mask"] = outputs.attention_mask |
|
|
|
assert all([len(x) == 512 for x in inputs.input_ids]) |
|
assert all([len(x) == 128 for x in outputs.input_ids]) |
|
|
|
return batch |
|
|
|
def _compute_metrics(pred): |
|
labels_ids = pred.label_ids |
|
pred_ids = pred.predictions |
|
|
|
|
|
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) |
|
label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True) |
|
|
|
accuracy = sum([int(pred_str[i] == label_str[i]) for i in range(len(pred_str))]) / len(pred_str) |
|
|
|
return {"accuracy": accuracy} |
|
|
|
|
|
train_dataset = train_dataset.map( |
|
_map_to_encoder_decoder_inputs, |
|
batched=True, |
|
batch_size=batch_size, |
|
remove_columns=["article", "highlights"], |
|
) |
|
train_dataset.set_format( |
|
type="torch", |
|
columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], |
|
) |
|
|
|
|
|
val_dataset = val_dataset.map( |
|
_map_to_encoder_decoder_inputs, |
|
batched=True, |
|
batch_size=batch_size, |
|
remove_columns=["article", "highlights"], |
|
) |
|
val_dataset.set_format( |
|
type="torch", |
|
columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], |
|
) |
|
|
|
output_dir = self.get_auto_remove_tmp_dir() |
|
|
|
training_args = Seq2SeqTrainingArguments( |
|
output_dir=output_dir, |
|
per_device_train_batch_size=batch_size, |
|
per_device_eval_batch_size=batch_size, |
|
predict_with_generate=True, |
|
evaluation_strategy="steps", |
|
do_train=True, |
|
do_eval=True, |
|
warmup_steps=0, |
|
eval_steps=2, |
|
logging_steps=2, |
|
) |
|
|
|
|
|
trainer = Seq2SeqTrainer( |
|
model=bert2bert, |
|
args=training_args, |
|
compute_metrics=_compute_metrics, |
|
train_dataset=train_dataset, |
|
eval_dataset=val_dataset, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
|
|
trainer.train() |
|
|