|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch DETA model. """ |
|
|
|
|
|
import inspect |
|
import math |
|
import unittest |
|
|
|
from transformers import DetaConfig, is_torch_available, is_torchvision_available, is_vision_available |
|
from transformers.file_utils import cached_property |
|
from transformers.testing_utils import require_torchvision, require_vision, slow, torch_device |
|
|
|
from ...generation.test_utils import GenerationTesterMixin |
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_torchvision_available(): |
|
from transformers import DetaForObjectDetection, DetaModel |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers import AutoImageProcessor |
|
|
|
|
|
class DetaModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=8, |
|
is_training=True, |
|
use_labels=True, |
|
hidden_size=256, |
|
num_hidden_layers=2, |
|
num_attention_heads=8, |
|
intermediate_size=4, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
num_queries=12, |
|
num_channels=3, |
|
image_size=196, |
|
n_targets=8, |
|
num_labels=91, |
|
num_feature_levels=4, |
|
encoder_n_points=2, |
|
decoder_n_points=6, |
|
two_stage=False, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.is_training = is_training |
|
self.use_labels = use_labels |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.num_queries = num_queries |
|
self.num_channels = num_channels |
|
self.image_size = image_size |
|
self.n_targets = n_targets |
|
self.num_labels = num_labels |
|
self.num_feature_levels = num_feature_levels |
|
self.encoder_n_points = encoder_n_points |
|
self.decoder_n_points = decoder_n_points |
|
self.two_stage = two_stage |
|
|
|
|
|
self.encoder_seq_length = ( |
|
math.ceil(self.image_size / 8) ** 2 |
|
+ math.ceil(self.image_size / 16) ** 2 |
|
+ math.ceil(self.image_size / 32) ** 2 |
|
+ math.ceil(self.image_size / 64) ** 2 |
|
) |
|
self.decoder_seq_length = self.num_queries |
|
|
|
def prepare_config_and_inputs(self): |
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) |
|
|
|
pixel_mask = torch.ones([self.batch_size, self.image_size, self.image_size], device=torch_device) |
|
|
|
labels = None |
|
if self.use_labels: |
|
|
|
labels = [] |
|
for i in range(self.batch_size): |
|
target = {} |
|
target["class_labels"] = torch.randint( |
|
high=self.num_labels, size=(self.n_targets,), device=torch_device |
|
) |
|
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) |
|
target["masks"] = torch.rand(self.n_targets, self.image_size, self.image_size, device=torch_device) |
|
labels.append(target) |
|
|
|
config = self.get_config() |
|
return config, pixel_values, pixel_mask, labels |
|
|
|
def get_config(self): |
|
return DetaConfig( |
|
d_model=self.hidden_size, |
|
encoder_layers=self.num_hidden_layers, |
|
decoder_layers=self.num_hidden_layers, |
|
encoder_attention_heads=self.num_attention_heads, |
|
decoder_attention_heads=self.num_attention_heads, |
|
encoder_ffn_dim=self.intermediate_size, |
|
decoder_ffn_dim=self.intermediate_size, |
|
dropout=self.hidden_dropout_prob, |
|
attention_dropout=self.attention_probs_dropout_prob, |
|
num_queries=self.num_queries, |
|
num_labels=self.num_labels, |
|
num_feature_levels=self.num_feature_levels, |
|
encoder_n_points=self.encoder_n_points, |
|
decoder_n_points=self.decoder_n_points, |
|
two_stage=self.two_stage, |
|
) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs() |
|
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} |
|
return config, inputs_dict |
|
|
|
def create_and_check_deta_model(self, config, pixel_values, pixel_mask, labels): |
|
model = DetaModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) |
|
result = model(pixel_values) |
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_size)) |
|
|
|
def create_and_check_deta_object_detection_head_model(self, config, pixel_values, pixel_mask, labels): |
|
model = DetaForObjectDetection(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) |
|
result = model(pixel_values) |
|
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels)) |
|
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) |
|
|
|
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) |
|
|
|
self.parent.assertEqual(result.loss.shape, ()) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels)) |
|
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) |
|
|
|
|
|
@require_torchvision |
|
class DetaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = (DetaModel, DetaForObjectDetection) if is_torchvision_available() else () |
|
pipeline_model_mapping = ( |
|
{"feature-extraction": DetaModel, "object-detection": DetaForObjectDetection} |
|
if is_torchvision_available() |
|
else {} |
|
) |
|
is_encoder_decoder = True |
|
test_torchscript = False |
|
test_pruning = False |
|
test_head_masking = False |
|
test_missing_keys = False |
|
|
|
|
|
def is_pipeline_test_to_skip( |
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name |
|
): |
|
if pipeline_test_casse_name == "ObjectDetectionPipelineTests": |
|
return True |
|
|
|
return False |
|
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): |
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) |
|
|
|
if return_labels: |
|
if model_class.__name__ == "DetaForObjectDetection": |
|
labels = [] |
|
for i in range(self.model_tester.batch_size): |
|
target = {} |
|
target["class_labels"] = torch.ones( |
|
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long |
|
) |
|
target["boxes"] = torch.ones( |
|
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float |
|
) |
|
target["masks"] = torch.ones( |
|
self.model_tester.n_targets, |
|
self.model_tester.image_size, |
|
self.model_tester.image_size, |
|
device=torch_device, |
|
dtype=torch.float, |
|
) |
|
labels.append(target) |
|
inputs_dict["labels"] = labels |
|
|
|
return inputs_dict |
|
|
|
def setUp(self): |
|
self.model_tester = DetaModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=DetaConfig, has_text_modality=False) |
|
|
|
def test_config(self): |
|
|
|
self.config_tester.create_and_test_config_to_json_string() |
|
self.config_tester.create_and_test_config_to_json_file() |
|
self.config_tester.create_and_test_config_from_and_save_pretrained() |
|
self.config_tester.create_and_test_config_with_num_labels() |
|
self.config_tester.check_config_can_be_init_without_params() |
|
|
|
def test_deta_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_deta_model(*config_and_inputs) |
|
|
|
def test_deta_object_detection_head_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_deta_object_detection_head_model(*config_and_inputs) |
|
|
|
@unittest.skip(reason="DETA does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="DETA does not have a get_input_embeddings method") |
|
def test_model_common_attributes(self): |
|
pass |
|
|
|
@unittest.skip(reason="DETA is not a generative model") |
|
def test_generate_without_input_ids(self): |
|
pass |
|
|
|
@unittest.skip(reason="DETA does not use token embeddings") |
|
def test_resize_tokens_embeddings(self): |
|
pass |
|
|
|
@unittest.skip(reason="Feed forward chunking is not implemented") |
|
def test_feed_forward_chunking(self): |
|
pass |
|
|
|
def test_attention_outputs(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_attentions"] = True |
|
inputs_dict["output_hidden_states"] = False |
|
config.return_dict = True |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs.encoder_attentions |
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) |
|
|
|
|
|
del inputs_dict["output_attentions"] |
|
config.output_attentions = True |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs.encoder_attentions |
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) |
|
|
|
self.assertListEqual( |
|
list(attentions[0].shape[-3:]), |
|
[ |
|
self.model_tester.num_attention_heads, |
|
self.model_tester.num_feature_levels, |
|
self.model_tester.encoder_n_points, |
|
], |
|
) |
|
out_len = len(outputs) |
|
|
|
correct_outlen = 8 |
|
|
|
|
|
if "labels" in inputs_dict: |
|
correct_outlen += 1 |
|
|
|
if model_class.__name__ == "DetaForObjectDetection": |
|
correct_outlen += 2 |
|
|
|
self.assertEqual(out_len, correct_outlen) |
|
|
|
|
|
decoder_attentions = outputs.decoder_attentions |
|
self.assertIsInstance(decoder_attentions, (list, tuple)) |
|
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(decoder_attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, self.model_tester.num_queries, self.model_tester.num_queries], |
|
) |
|
|
|
|
|
cross_attentions = outputs.cross_attentions |
|
self.assertIsInstance(cross_attentions, (list, tuple)) |
|
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(cross_attentions[0].shape[-3:]), |
|
[ |
|
self.model_tester.num_attention_heads, |
|
self.model_tester.num_feature_levels, |
|
self.model_tester.decoder_n_points, |
|
], |
|
) |
|
|
|
|
|
inputs_dict["output_attentions"] = True |
|
inputs_dict["output_hidden_states"] = True |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
if hasattr(self.model_tester, "num_hidden_states_types"): |
|
added_hidden_states = self.model_tester.num_hidden_states_types |
|
elif self.is_encoder_decoder: |
|
added_hidden_states = 2 |
|
else: |
|
added_hidden_states = 1 |
|
self.assertEqual(out_len + added_hidden_states, len(outputs)) |
|
|
|
self_attentions = outputs.encoder_attentions |
|
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(self_attentions[0].shape[-3:]), |
|
[ |
|
self.model_tester.num_attention_heads, |
|
self.model_tester.num_feature_levels, |
|
self.model_tester.encoder_n_points, |
|
], |
|
) |
|
|
|
|
|
def test_retain_grad_hidden_states_attentions(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.output_hidden_states = True |
|
config.output_attentions = True |
|
|
|
|
|
model_class = self.all_model_classes[0] |
|
model = model_class(config) |
|
model.to(torch_device) |
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class) |
|
|
|
outputs = model(**inputs) |
|
|
|
|
|
output = outputs[1] |
|
|
|
encoder_hidden_states = outputs.encoder_hidden_states[0] |
|
encoder_attentions = outputs.encoder_attentions[0] |
|
encoder_hidden_states.retain_grad() |
|
encoder_attentions.retain_grad() |
|
|
|
decoder_attentions = outputs.decoder_attentions[0] |
|
decoder_attentions.retain_grad() |
|
|
|
cross_attentions = outputs.cross_attentions[0] |
|
cross_attentions.retain_grad() |
|
|
|
output.flatten()[0].backward(retain_graph=True) |
|
|
|
self.assertIsNotNone(encoder_hidden_states.grad) |
|
self.assertIsNotNone(encoder_attentions.grad) |
|
self.assertIsNotNone(decoder_attentions.grad) |
|
self.assertIsNotNone(cross_attentions.grad) |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
if model.config.is_encoder_decoder: |
|
expected_arg_names = ["pixel_values", "pixel_mask"] |
|
expected_arg_names.extend( |
|
["head_mask", "decoder_head_mask", "encoder_outputs"] |
|
if "head_mask" and "decoder_head_mask" in arg_names |
|
else [] |
|
) |
|
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) |
|
else: |
|
expected_arg_names = ["pixel_values", "pixel_mask"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
@unittest.skip(reason="Model doesn't use tied weights") |
|
def test_tied_model_weights_key_ignore(self): |
|
pass |
|
|
|
def test_initialization(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
configs_no_init = _config_zero_init(config) |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
|
|
for name, module in model.named_modules(): |
|
if module.__class__.__name__ == "DetaBackboneWithPositionalEncodings": |
|
backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()] |
|
break |
|
|
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
if ( |
|
"level_embed" in name |
|
or "sampling_offsets.bias" in name |
|
or "value_proj" in name |
|
or "output_proj" in name |
|
or "reference_points" in name |
|
or name in backbone_params |
|
): |
|
continue |
|
self.assertIn( |
|
((param.data.mean() * 1e9).round() / 1e9).item(), |
|
[0.0, 1.0], |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
|
|
|
|
TOLERANCE = 1e-4 |
|
|
|
|
|
|
|
def prepare_img(): |
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
return image |
|
|
|
|
|
@require_torchvision |
|
@require_vision |
|
@slow |
|
class DetaModelIntegrationTests(unittest.TestCase): |
|
@cached_property |
|
def default_image_processor(self): |
|
return AutoImageProcessor.from_pretrained("jozhang97/deta-resnet-50") if is_vision_available() else None |
|
|
|
def test_inference_object_detection_head(self): |
|
model = DetaForObjectDetection.from_pretrained("jozhang97/deta-resnet-50").to(torch_device) |
|
|
|
image_processor = self.default_image_processor |
|
image = prepare_img() |
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
expected_shape_logits = torch.Size((1, 300, model.config.num_labels)) |
|
self.assertEqual(outputs.logits.shape, expected_shape_logits) |
|
|
|
expected_logits = torch.tensor( |
|
[[-7.3978, -2.5406, -4.1668], [-8.2684, -3.9933, -3.8096], [-7.0515, -3.7973, -5.8516]] |
|
).to(torch_device) |
|
expected_boxes = torch.tensor( |
|
[[0.5043, 0.4973, 0.9998], [0.2542, 0.5489, 0.4748], [0.5490, 0.2765, 0.0570]] |
|
).to(torch_device) |
|
|
|
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) |
|
|
|
expected_shape_boxes = torch.Size((1, 300, 4)) |
|
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) |
|
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)) |
|
|
|
|
|
results = image_processor.post_process_object_detection( |
|
outputs, threshold=0.3, target_sizes=[image.size[::-1]] |
|
)[0] |
|
expected_scores = torch.tensor([0.6392, 0.6276, 0.5546, 0.5260, 0.4706], device=torch_device) |
|
expected_labels = [75, 17, 17, 75, 63] |
|
expected_slice_boxes = torch.tensor([40.5866, 73.2107, 176.1421, 117.1751], device=torch_device) |
|
|
|
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) |
|
self.assertSequenceEqual(results["labels"].tolist(), expected_labels) |
|
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes)) |
|
|
|
def test_inference_object_detection_head_swin_backbone(self): |
|
model = DetaForObjectDetection.from_pretrained("jozhang97/deta-swin-large").to(torch_device) |
|
|
|
image_processor = self.default_image_processor |
|
image = prepare_img() |
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
expected_shape_logits = torch.Size((1, 300, model.config.num_labels)) |
|
self.assertEqual(outputs.logits.shape, expected_shape_logits) |
|
|
|
expected_logits = torch.tensor( |
|
[[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] |
|
).to(torch_device) |
|
expected_boxes = torch.tensor( |
|
[[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] |
|
).to(torch_device) |
|
|
|
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) |
|
|
|
expected_shape_boxes = torch.Size((1, 300, 4)) |
|
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) |
|
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)) |
|
|
|
|
|
results = image_processor.post_process_object_detection( |
|
outputs, threshold=0.3, target_sizes=[image.size[::-1]] |
|
)[0] |
|
expected_scores = torch.tensor([0.6831, 0.6826, 0.5684, 0.5464, 0.4392], device=torch_device) |
|
expected_labels = [17, 17, 75, 75, 63] |
|
expected_slice_boxes = torch.tensor([345.8478, 23.6754, 639.8562, 372.8265], device=torch_device) |
|
|
|
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) |
|
self.assertSequenceEqual(results["labels"].tolist(), expected_labels) |
|
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes)) |
|
|