|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch ConvNext model. """ |
|
|
|
|
|
import inspect |
|
import unittest |
|
|
|
from transformers import ConvNextConfig |
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device |
|
from transformers.utils import cached_property, is_torch_available, is_vision_available |
|
|
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel |
|
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers import AutoFeatureExtractor |
|
|
|
|
|
class ConvNextModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=13, |
|
image_size=32, |
|
num_channels=3, |
|
num_stages=4, |
|
hidden_sizes=[10, 20, 30, 40], |
|
depths=[2, 2, 3, 2], |
|
is_training=True, |
|
use_labels=True, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
num_labels=10, |
|
initializer_range=0.02, |
|
out_features=["stage2", "stage3", "stage4"], |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.image_size = image_size |
|
self.num_channels = num_channels |
|
self.num_stages = num_stages |
|
self.hidden_sizes = hidden_sizes |
|
self.depths = depths |
|
self.is_training = is_training |
|
self.use_labels = use_labels |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.num_labels = num_labels |
|
self.initializer_range = initializer_range |
|
self.out_features = out_features |
|
self.scope = scope |
|
|
|
def prepare_config_and_inputs(self): |
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) |
|
|
|
labels = None |
|
if self.use_labels: |
|
labels = ids_tensor([self.batch_size], self.num_labels) |
|
|
|
config = self.get_config() |
|
return config, pixel_values, labels |
|
|
|
def get_config(self): |
|
return ConvNextConfig( |
|
num_channels=self.num_channels, |
|
hidden_sizes=self.hidden_sizes, |
|
depths=self.depths, |
|
num_stages=self.num_stages, |
|
hidden_act=self.hidden_act, |
|
is_decoder=False, |
|
initializer_range=self.initializer_range, |
|
out_features=self.out_features, |
|
num_labels=self.num_labels, |
|
) |
|
|
|
def create_and_check_model(self, config, pixel_values, labels): |
|
model = ConvNextModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values) |
|
|
|
self.parent.assertEqual( |
|
result.last_hidden_state.shape, |
|
(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), |
|
) |
|
|
|
def create_and_check_for_image_classification(self, config, pixel_values, labels): |
|
model = ConvNextForImageClassification(config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values, labels=labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) |
|
|
|
def create_and_check_backbone(self, config, pixel_values, labels): |
|
model = ConvNextBackbone(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values) |
|
|
|
|
|
self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) |
|
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) |
|
|
|
|
|
self.parent.assertEqual(len(model.channels), len(config.out_features)) |
|
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) |
|
|
|
|
|
config.out_features = None |
|
model = ConvNextBackbone(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values) |
|
|
|
|
|
self.parent.assertEqual(len(result.feature_maps), 1) |
|
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) |
|
|
|
|
|
self.parent.assertEqual(len(model.channels), 1) |
|
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, pixel_values, labels = config_and_inputs |
|
inputs_dict = {"pixel_values": pixel_values} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class ConvNextModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
""" |
|
Here we also overwrite some of the tests of test_modeling_common.py, as ConvNext does not use input_ids, inputs_embeds, |
|
attention_mask and seq_length. |
|
""" |
|
|
|
all_model_classes = ( |
|
( |
|
ConvNextModel, |
|
ConvNextForImageClassification, |
|
ConvNextBackbone, |
|
) |
|
if is_torch_available() |
|
else () |
|
) |
|
pipeline_model_mapping = ( |
|
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} |
|
if is_torch_available() |
|
else {} |
|
) |
|
|
|
fx_compatible = True |
|
test_pruning = False |
|
test_resize_embeddings = False |
|
test_head_masking = False |
|
has_attentions = False |
|
|
|
def setUp(self): |
|
self.model_tester = ConvNextModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=ConvNextConfig, has_text_modality=False, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.create_and_test_config_common_properties() |
|
self.config_tester.create_and_test_config_to_json_string() |
|
self.config_tester.create_and_test_config_to_json_file() |
|
self.config_tester.create_and_test_config_from_and_save_pretrained() |
|
self.config_tester.create_and_test_config_with_num_labels() |
|
self.config_tester.check_config_can_be_init_without_params() |
|
self.config_tester.check_config_arguments_init() |
|
|
|
def create_and_test_config_common_properties(self): |
|
return |
|
|
|
@unittest.skip(reason="ConvNext does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="ConvNext does not support input and output embeddings") |
|
def test_model_common_attributes(self): |
|
pass |
|
|
|
@unittest.skip(reason="ConvNext does not use feedforward chunking") |
|
def test_feed_forward_chunking(self): |
|
pass |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
expected_arg_names = ["pixel_values"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_hidden_states_output(self): |
|
def check_hidden_states_output(inputs_dict, config, model_class): |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states |
|
|
|
expected_num_stages = self.model_tester.num_stages |
|
self.assertEqual(len(hidden_states), expected_num_stages + 1) |
|
|
|
|
|
self.assertListEqual( |
|
list(hidden_states[0].shape[-2:]), |
|
[self.model_tester.image_size // 4, self.model_tester.image_size // 4], |
|
) |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_hidden_states"] = True |
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
|
|
del inputs_dict["output_hidden_states"] |
|
config.output_hidden_states = True |
|
|
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
def test_for_image_classification(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = ConvNextModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
|
|
def prepare_img(): |
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
return image |
|
|
|
|
|
@require_torch |
|
@require_vision |
|
class ConvNextModelIntegrationTest(unittest.TestCase): |
|
@cached_property |
|
def default_feature_extractor(self): |
|
return AutoFeatureExtractor.from_pretrained("facebook/convnext-tiny-224") if is_vision_available() else None |
|
|
|
@slow |
|
def test_inference_image_classification_head(self): |
|
model = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224").to(torch_device) |
|
|
|
feature_extractor = self.default_feature_extractor |
|
image = prepare_img() |
|
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
expected_shape = torch.Size((1, 1000)) |
|
self.assertEqual(outputs.logits.shape, expected_shape) |
|
|
|
expected_slice = torch.tensor([-0.0260, -0.4739, 0.1911]).to(torch_device) |
|
|
|
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) |
|
|