|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import sys |
|
import tempfile |
|
import unittest |
|
from collections import OrderedDict |
|
from pathlib import Path |
|
|
|
import pytest |
|
|
|
from transformers import BertConfig, GPT2Model, is_safetensors_available, is_torch_available |
|
from transformers.models.auto.configuration_auto import CONFIG_MAPPING |
|
from transformers.testing_utils import ( |
|
DUMMY_UNKNOWN_IDENTIFIER, |
|
SMALL_MODEL_IDENTIFIER, |
|
RequestCounter, |
|
require_torch, |
|
slow, |
|
) |
|
|
|
from ..bert.test_modeling_bert import BertModelTester |
|
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) |
|
|
|
from test_module.custom_configuration import CustomConfig |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
from test_module.custom_modeling import CustomModel |
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoModelForMaskedLM, |
|
AutoModelForPreTraining, |
|
AutoModelForQuestionAnswering, |
|
AutoModelForSeq2SeqLM, |
|
AutoModelForSequenceClassification, |
|
AutoModelForTableQuestionAnswering, |
|
AutoModelForTokenClassification, |
|
AutoModelWithLMHead, |
|
BertForMaskedLM, |
|
BertForPreTraining, |
|
BertForQuestionAnswering, |
|
BertForSequenceClassification, |
|
BertForTokenClassification, |
|
BertModel, |
|
FunnelBaseModel, |
|
FunnelModel, |
|
GPT2Config, |
|
GPT2LMHeadModel, |
|
RobertaForMaskedLM, |
|
T5Config, |
|
T5ForConditionalGeneration, |
|
TapasConfig, |
|
TapasForQuestionAnswering, |
|
) |
|
from transformers.models.auto.modeling_auto import ( |
|
MODEL_FOR_CAUSAL_LM_MAPPING, |
|
MODEL_FOR_MASKED_LM_MAPPING, |
|
MODEL_FOR_PRETRAINING_MAPPING, |
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING, |
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, |
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, |
|
MODEL_MAPPING, |
|
) |
|
from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST |
|
from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST |
|
from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST |
|
from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
|
|
@require_torch |
|
class AutoModelTest(unittest.TestCase): |
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModel.from_pretrained(model_name) |
|
model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertModel) |
|
|
|
self.assertEqual(len(loading_info["missing_keys"]), 0) |
|
|
|
|
|
EXPECTED_NUM_OF_UNEXPECTED_KEYS = 7 if is_safetensors_available() else 8 |
|
self.assertEqual(len(loading_info["unexpected_keys"]), EXPECTED_NUM_OF_UNEXPECTED_KEYS) |
|
self.assertEqual(len(loading_info["mismatched_keys"]), 0) |
|
self.assertEqual(len(loading_info["error_msgs"]), 0) |
|
|
|
@slow |
|
def test_model_for_pretraining_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelForPreTraining.from_pretrained(model_name) |
|
model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForPreTraining) |
|
|
|
for key, value in loading_info.items(): |
|
self.assertEqual(len(value), 0) |
|
|
|
@slow |
|
def test_lmhead_model_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelWithLMHead.from_pretrained(model_name) |
|
model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForMaskedLM) |
|
|
|
@slow |
|
def test_model_for_causal_lm(self): |
|
for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, GPT2Config) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, GPT2LMHeadModel) |
|
|
|
@slow |
|
def test_model_for_masked_lm(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelForMaskedLM.from_pretrained(model_name) |
|
model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForMaskedLM) |
|
|
|
@slow |
|
def test_model_for_encoder_decoder_lm(self): |
|
for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, T5Config) |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, T5ForConditionalGeneration) |
|
|
|
@slow |
|
def test_sequence_classification_model_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
model, loading_info = AutoModelForSequenceClassification.from_pretrained( |
|
model_name, output_loading_info=True |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForSequenceClassification) |
|
|
|
@slow |
|
def test_question_answering_model_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForQuestionAnswering) |
|
|
|
@slow |
|
def test_table_question_answering_model_from_pretrained(self): |
|
for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, TapasConfig) |
|
|
|
model = AutoModelForTableQuestionAnswering.from_pretrained(model_name) |
|
model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained( |
|
model_name, output_loading_info=True |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TapasForQuestionAnswering) |
|
|
|
@slow |
|
def test_token_classification_model_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelForTokenClassification.from_pretrained(model_name) |
|
model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForTokenClassification) |
|
|
|
def test_from_pretrained_identifier(self): |
|
model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) |
|
self.assertIsInstance(model, BertForMaskedLM) |
|
self.assertEqual(model.num_parameters(), 14410) |
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410) |
|
|
|
def test_from_identifier_from_model_type(self): |
|
model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER) |
|
self.assertIsInstance(model, RobertaForMaskedLM) |
|
self.assertEqual(model.num_parameters(), 14410) |
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410) |
|
|
|
def test_from_pretrained_with_tuple_values(self): |
|
|
|
model = AutoModel.from_pretrained("sgugger/funnel-random-tiny") |
|
self.assertIsInstance(model, FunnelModel) |
|
|
|
config = copy.deepcopy(model.config) |
|
config.architectures = ["FunnelBaseModel"] |
|
model = AutoModel.from_config(config) |
|
self.assertIsInstance(model, FunnelBaseModel) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
model = AutoModel.from_pretrained(tmp_dir) |
|
self.assertIsInstance(model, FunnelBaseModel) |
|
|
|
def test_from_pretrained_dynamic_model_local(self): |
|
try: |
|
AutoConfig.register("custom", CustomConfig) |
|
AutoModel.register(CustomConfig, CustomModel) |
|
|
|
config = CustomConfig(hidden_size=32) |
|
model = CustomModel(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
|
|
new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) |
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
finally: |
|
if "custom" in CONFIG_MAPPING._extra_content: |
|
del CONFIG_MAPPING._extra_content["custom"] |
|
if CustomConfig in MODEL_MAPPING._extra_content: |
|
del MODEL_MAPPING._extra_content[CustomConfig] |
|
|
|
def test_from_pretrained_dynamic_model_distant(self): |
|
model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True) |
|
self.assertEqual(model.__class__.__name__, "NewModel") |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) |
|
|
|
self.assertEqual(reloaded_model.__class__.__name__, "NewModel") |
|
for p1, p2 in zip(model.parameters(), reloaded_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
|
|
model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_with_util", trust_remote_code=True) |
|
self.assertEqual(model.__class__.__name__, "NewModel") |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) |
|
|
|
self.assertEqual(reloaded_model.__class__.__name__, "NewModel") |
|
for p1, p2 in zip(model.parameters(), reloaded_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
def test_new_model_registration(self): |
|
AutoConfig.register("custom", CustomConfig) |
|
|
|
auto_classes = [ |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoModelForMaskedLM, |
|
AutoModelForPreTraining, |
|
AutoModelForQuestionAnswering, |
|
AutoModelForSequenceClassification, |
|
AutoModelForTokenClassification, |
|
] |
|
|
|
try: |
|
for auto_class in auto_classes: |
|
with self.subTest(auto_class.__name__): |
|
|
|
with self.assertRaises(ValueError): |
|
auto_class.register(BertConfig, CustomModel) |
|
auto_class.register(CustomConfig, CustomModel) |
|
|
|
with self.assertRaises(ValueError): |
|
auto_class.register(BertConfig, BertModel) |
|
|
|
|
|
tiny_config = BertModelTester(self).get_config() |
|
config = CustomConfig(**tiny_config.to_dict()) |
|
model = auto_class.from_config(config) |
|
self.assertIsInstance(model, CustomModel) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
new_model = auto_class.from_pretrained(tmp_dir) |
|
|
|
self.assertIsInstance(new_model, CustomModel) |
|
|
|
finally: |
|
if "custom" in CONFIG_MAPPING._extra_content: |
|
del CONFIG_MAPPING._extra_content["custom"] |
|
for mapping in ( |
|
MODEL_MAPPING, |
|
MODEL_FOR_PRETRAINING_MAPPING, |
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING, |
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, |
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, |
|
MODEL_FOR_CAUSAL_LM_MAPPING, |
|
MODEL_FOR_MASKED_LM_MAPPING, |
|
): |
|
if CustomConfig in mapping._extra_content: |
|
del mapping._extra_content[CustomConfig] |
|
|
|
def test_repo_not_found(self): |
|
with self.assertRaisesRegex( |
|
EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" |
|
): |
|
_ = AutoModel.from_pretrained("bert-base") |
|
|
|
def test_revision_not_found(self): |
|
with self.assertRaisesRegex( |
|
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" |
|
): |
|
_ = AutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") |
|
|
|
def test_model_file_not_found(self): |
|
with self.assertRaisesRegex( |
|
EnvironmentError, |
|
"hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin", |
|
): |
|
_ = AutoModel.from_pretrained("hf-internal-testing/config-no-model") |
|
|
|
def test_model_from_tf_suggestion(self): |
|
with self.assertRaisesRegex(EnvironmentError, "Use `from_tf=True` to load this model"): |
|
_ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only") |
|
|
|
def test_model_from_flax_suggestion(self): |
|
with self.assertRaisesRegex(EnvironmentError, "Use `from_flax=True` to load this model"): |
|
_ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") |
|
|
|
def test_cached_model_has_minimum_calls_to_head(self): |
|
|
|
_ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
with RequestCounter() as counter: |
|
_ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
self.assertEqual(counter.get_request_count, 0) |
|
self.assertEqual(counter.head_request_count, 1) |
|
self.assertEqual(counter.other_request_count, 0) |
|
|
|
|
|
_ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded") |
|
with RequestCounter() as counter: |
|
_ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded") |
|
self.assertEqual(counter.get_request_count, 0) |
|
self.assertEqual(counter.head_request_count, 1) |
|
self.assertEqual(counter.other_request_count, 0) |
|
|
|
def test_attr_not_existing(self): |
|
from transformers.models.auto.auto_factory import _LazyAutoMapping |
|
|
|
_CONFIG_MAPPING_NAMES = OrderedDict([("bert", "BertConfig")]) |
|
_MODEL_MAPPING_NAMES = OrderedDict([("bert", "GhostModel")]) |
|
_MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES) |
|
|
|
with pytest.raises(ValueError, match=r"Could not find GhostModel neither in .* nor in .*!"): |
|
_MODEL_MAPPING[BertConfig] |
|
|
|
_MODEL_MAPPING_NAMES = OrderedDict([("bert", "BertModel")]) |
|
_MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES) |
|
self.assertEqual(_MODEL_MAPPING[BertConfig], BertModel) |
|
|
|
_MODEL_MAPPING_NAMES = OrderedDict([("bert", "GPT2Model")]) |
|
_MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES) |
|
self.assertEqual(_MODEL_MAPPING[BertConfig], GPT2Model) |
|
|