File size: 5,948 Bytes
ed7a497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class BloomTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
slow_tokenizer_class = None
rust_tokenizer_class = BloomTokenizerFast
tokenizer_class = BloomTokenizerFast
test_rust_tokenizer = True
test_slow_tokenizer = False
from_pretrained_vocab_key = "tokenizer_file"
special_tokens_map = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
def setUp(self):
super().setUp()
tokenizer = BloomTokenizerFast.from_pretrained("bigscience/tokenizer")
tokenizer.save_pretrained(self.tmpdirname)
def get_rust_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return BloomTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
def test_encodings_from_sample_data(self):
"""
Assert that the created tokens are the same than the hard-coded ones
"""
tokenizer = self.get_rust_tokenizer()
INPUT_SENTENCES = ["The quick brown fox</s>", "jumps over the lazy dog</s>"]
TARGET_TOKENS = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]]
computed_tokens = tokenizer.batch_encode_plus(INPUT_SENTENCES)["input_ids"]
self.assertListEqual(TARGET_TOKENS, computed_tokens)
decoded_tokens = tokenizer.batch_decode(computed_tokens)
self.assertListEqual(decoded_tokens, INPUT_SENTENCES)
def test_padding(self, max_length=6):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
s = "This is a simple input"
s2 = ["This is a simple input 1", "This is a simple input 2"]
p = ("This is a simple input", "This is a pair")
p2 = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
try:
tokenizer_r.encode(s, max_length=max_length)
tokenizer_r.encode_plus(s, max_length=max_length)
tokenizer_r.batch_encode_plus(s2, max_length=max_length)
tokenizer_r.encode(p, max_length=max_length)
tokenizer_r.batch_encode_plus(p2, max_length=max_length)
except ValueError:
self.fail("Bloom Tokenizer should be able to deal with padding")
tokenizer_r.pad_token = None # Hotfixing padding = None
self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")
# Simple input
self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")
# Simple input
self.assertRaises(
ValueError,
tokenizer_r.batch_encode_plus,
s2,
max_length=max_length,
padding="max_length",
)
# Pair input
self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")
# Pair input
self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")
# Pair input
self.assertRaises(
ValueError,
tokenizer_r.batch_encode_plus,
p2,
max_length=max_length,
padding="max_length",
)
def test_encodings_from_xnli_dataset(self):
"""
Tests the tokenizer downloaded from here:
- https://huggingface.co/bigscience/tokenizer/
"""
tokenizer = self.get_rust_tokenizer()
ds = load_dataset("xnli", "all_languages", split="test", streaming=True)
sample_data = next(iter(ds))["premise"] # pick up one data
input_text = list(sample_data.values())
output_tokens = list(map(tokenizer.encode, input_text))
predicted_text = [tokenizer.decode(x, clean_up_tokenization_spaces=False) for x in output_tokens]
self.assertListEqual(predicted_text, input_text)
def test_pretrained_model_lists(self):
# The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have
# any sequence length constraints. This test of the parent class will fail since it relies on the
# maximum sequence length of the positoonal embeddings.
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1)
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1)
|