jucamohedano commited on
Commit
95e1228
·
1 Parent(s): 00c3ce9

update docs

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -101,14 +101,12 @@ with gr.Blocks(title=title) as demo:
101
  param_loss=" \
102
  2. `loss`: The loss function used for training. \
103
  The default is `squared_hinge`, which is a variant \
104
- of hinge loss. Other options include `hinge` \
105
- each with different properties and performance characteristics."
106
  param_penalty="\
107
  3. `penalty`: The type of regularization penalty \
108
  applied to the model. The default is `l2`, which uses \
109
- the L2 norm. Other options include `l1` and \
110
- which use the L1 norm and a combination of L1 and L2 norms, \
111
- respectively."
112
  param_dual="\
113
  4. `dual`: Determines whether the dual or primal optimization \
114
  problem is solved. By default, `dual=True` when the number \
@@ -121,13 +119,15 @@ with gr.Blocks(title=title) as demo:
121
  a specified tolerance level."
122
  param_max_iter="\
123
  6. `max_iter`: The maximum number of iterations for solver \
124
- convergence. If not specified, the default value is set."
125
  gr.Markdown(param_C)
126
  gr.Markdown(param_loss)
127
  gr.Markdown(param_penalty)
128
  gr.Markdown(param_dual)
129
  gr.Markdown(param_tol)
130
  gr.Markdown(param_max_iter)
 
 
131
 
132
 
133
  n_samples = gr.Slider(minimum=20, maximum=100, step=5,
 
101
  param_loss=" \
102
  2. `loss`: The loss function used for training. \
103
  The default is `squared_hinge`, which is a variant \
104
+ of hinge loss. The combination of penalty='l1' and \
105
+ loss='hinge' is not supported."
106
  param_penalty="\
107
  3. `penalty`: The type of regularization penalty \
108
  applied to the model. The default is `l2`, which uses \
109
+ the L2 norm."
 
 
110
  param_dual="\
111
  4. `dual`: Determines whether the dual or primal optimization \
112
  problem is solved. By default, `dual=True` when the number \
 
119
  a specified tolerance level."
120
  param_max_iter="\
121
  6. `max_iter`: The maximum number of iterations for solver \
122
+ convergence. If not specified, the default value is 1000."
123
  gr.Markdown(param_C)
124
  gr.Markdown(param_loss)
125
  gr.Markdown(param_penalty)
126
  gr.Markdown(param_dual)
127
  gr.Markdown(param_tol)
128
  gr.Markdown(param_max_iter)
129
+ gr.Markdown("Read more in the \
130
+ [original example](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC).")
131
 
132
 
133
  n_samples = gr.Slider(minimum=20, maximum=100, step=5,