jucamohedano
commited on
Commit
·
95e1228
1
Parent(s):
00c3ce9
update docs
Browse files
app.py
CHANGED
@@ -101,14 +101,12 @@ with gr.Blocks(title=title) as demo:
|
|
101 |
param_loss=" \
|
102 |
2. `loss`: The loss function used for training. \
|
103 |
The default is `squared_hinge`, which is a variant \
|
104 |
-
of hinge loss.
|
105 |
-
|
106 |
param_penalty="\
|
107 |
3. `penalty`: The type of regularization penalty \
|
108 |
applied to the model. The default is `l2`, which uses \
|
109 |
-
the L2 norm.
|
110 |
-
which use the L1 norm and a combination of L1 and L2 norms, \
|
111 |
-
respectively."
|
112 |
param_dual="\
|
113 |
4. `dual`: Determines whether the dual or primal optimization \
|
114 |
problem is solved. By default, `dual=True` when the number \
|
@@ -121,13 +119,15 @@ with gr.Blocks(title=title) as demo:
|
|
121 |
a specified tolerance level."
|
122 |
param_max_iter="\
|
123 |
6. `max_iter`: The maximum number of iterations for solver \
|
124 |
-
convergence. If not specified, the default value is
|
125 |
gr.Markdown(param_C)
|
126 |
gr.Markdown(param_loss)
|
127 |
gr.Markdown(param_penalty)
|
128 |
gr.Markdown(param_dual)
|
129 |
gr.Markdown(param_tol)
|
130 |
gr.Markdown(param_max_iter)
|
|
|
|
|
131 |
|
132 |
|
133 |
n_samples = gr.Slider(minimum=20, maximum=100, step=5,
|
|
|
101 |
param_loss=" \
|
102 |
2. `loss`: The loss function used for training. \
|
103 |
The default is `squared_hinge`, which is a variant \
|
104 |
+
of hinge loss. The combination of penalty='l1' and \
|
105 |
+
loss='hinge' is not supported."
|
106 |
param_penalty="\
|
107 |
3. `penalty`: The type of regularization penalty \
|
108 |
applied to the model. The default is `l2`, which uses \
|
109 |
+
the L2 norm."
|
|
|
|
|
110 |
param_dual="\
|
111 |
4. `dual`: Determines whether the dual or primal optimization \
|
112 |
problem is solved. By default, `dual=True` when the number \
|
|
|
119 |
a specified tolerance level."
|
120 |
param_max_iter="\
|
121 |
6. `max_iter`: The maximum number of iterations for solver \
|
122 |
+
convergence. If not specified, the default value is 1000."
|
123 |
gr.Markdown(param_C)
|
124 |
gr.Markdown(param_loss)
|
125 |
gr.Markdown(param_penalty)
|
126 |
gr.Markdown(param_dual)
|
127 |
gr.Markdown(param_tol)
|
128 |
gr.Markdown(param_max_iter)
|
129 |
+
gr.Markdown("Read more in the \
|
130 |
+
[original example](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC).")
|
131 |
|
132 |
|
133 |
n_samples = gr.Slider(minimum=20, maximum=100, step=5,
|