import gradio as gr import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score FIGSIZE = (10,10) feature_names = ["age", "body-mass index (BMI)", "blood pressure", "total serum cholesterol", "low-density lipoproteins (LDL)", "high-density lipoproteins (HDL)", "total cholesterol / HDL", "log of serum triglycerides level (possibly)","blood sugar level"] def create_dataset(feature_id=2): # Load the diabetes dataset diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True) # Use only one feature diabetes_X = diabetes_X[:, np.newaxis, feature_id] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes_y[:-20] diabetes_y_test = diabetes_y[-20:] return diabetes_X_train, diabetes_X_test, diabetes_y_train, diabetes_y_test def train_model(input_data): # We removed the sex variable if input_data == 'age': feature_id = 0 else: feature_id = feature_names.index(input_data) + 1 diabetes_X_train, diabetes_X_test, diabetes_y_train, diabetes_y_test = create_dataset(feature_id) # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # Make predictions using the testing set diabetes_y_pred = regr.predict(diabetes_X_test) mse = mean_squared_error(diabetes_y_test, diabetes_y_pred) r2 = r2_score(diabetes_y_test, diabetes_y_pred) # Plot outputs fig = plt.figure(figsize=FIGSIZE) # plt.title(input_data) plt.scatter(diabetes_X_test, diabetes_y_test, color="black") plt.plot(diabetes_X_test, diabetes_y_pred, color="blue", linewidth=3) plt.xticks(()) plt.yticks(()) return fig, regr.coef_, mse, r2 title = "Linear Regression Example 📈" description = "The example shows how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset" with gr.Blocks() as demo: gr.Markdown(f"## {title}") gr.Markdown(description) with gr.Column(): with gr.Row(): plot = gr.Plot() with gr.Column(): input_data = gr.Dropdown(choices=feature_names, label="Feature", value="body-mass index") coef = gr.Textbox(label="Coefficients") mse = gr.Textbox(label="MSE") r2 = gr.Textbox(label="R2") input_data.change(fn=train_model, inputs=[input_data], outputs=[plot, coef, mse, r2], queue=False) demo.launch(enable_queue=True)