|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
|
|
from datasets import load_dataset |
|
from sklearn.ensemble import GradientBoostingClassifier |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import accuracy_score, confusion_matrix |
|
|
|
matplotlib.use('Agg') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SUGGESTED_DATASETS = [ |
|
"scikit-learn/iris", |
|
"uci/wine", |
|
"SKIP/ENTER_CUSTOM" |
|
] |
|
|
|
def update_columns(dataset_id, custom_dataset_id): |
|
""" |
|
After the user chooses a dataset from the dropdown or enters their own, |
|
this function loads the dataset's "train" split, converts it to a DataFrame, |
|
and returns the columns. These columns are used to populate the Label and |
|
Feature selectors in the UI. |
|
""" |
|
if dataset_id != "SKIP/ENTER_CUSTOM": |
|
final_id = dataset_id |
|
else: |
|
final_id = custom_dataset_id.strip() |
|
|
|
try: |
|
ds = load_dataset(final_id, split="train") |
|
df = pd.DataFrame(ds) |
|
cols = df.columns.tolist() |
|
|
|
message = ( |
|
f"**Loaded dataset**: `{final_id}`\n\n" |
|
f"**Columns found**: {cols}" |
|
) |
|
return ( |
|
gr.update(choices=cols, value=None), |
|
gr.update(choices=cols, value=[]), |
|
message |
|
) |
|
except Exception as e: |
|
err_msg = f"**Error loading** `{final_id}`: {e}" |
|
return ( |
|
gr.update(choices=[], value=None), |
|
gr.update(choices=[], value=[]), |
|
err_msg |
|
) |
|
|
|
def train_model(dataset_id, custom_dataset_id, label_column, feature_columns, |
|
learning_rate, n_estimators, max_depth, test_size): |
|
""" |
|
1. Decide which dataset ID to load (from dropdown or custom). |
|
2. Load that dataset's 'train' split, turn into DataFrame, extract X (features) and y (label). |
|
3. Train a GradientBoostingClassifier on X_train, y_train. |
|
4. Compute accuracy and confusion matrix on X_test, y_test. |
|
5. Plot and return feature importances + confusion matrix heatmap + textual summary. |
|
""" |
|
|
|
if dataset_id != "SKIP/ENTER_CUSTOM": |
|
final_id = dataset_id |
|
else: |
|
final_id = custom_dataset_id.strip() |
|
|
|
|
|
ds = load_dataset(final_id, split="train") |
|
df = pd.DataFrame(ds) |
|
|
|
|
|
if label_column not in df.columns: |
|
raise ValueError(f"Label column '{label_column}' not found in dataset columns.") |
|
for fc in feature_columns: |
|
if fc not in df.columns: |
|
raise ValueError(f"Feature column '{fc}' not found in dataset columns.") |
|
|
|
|
|
X = df[feature_columns].values |
|
y = df[label_column].values |
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split( |
|
X, y, test_size=test_size, random_state=42 |
|
) |
|
|
|
|
|
clf = GradientBoostingClassifier( |
|
learning_rate=learning_rate, |
|
n_estimators=int(n_estimators), |
|
max_depth=int(max_depth), |
|
random_state=42 |
|
) |
|
clf.fit(X_train, y_train) |
|
|
|
|
|
y_pred = clf.predict(X_test) |
|
accuracy = accuracy_score(y_test, y_pred) |
|
cm = confusion_matrix(y_test, y_pred) |
|
|
|
|
|
fig, axs = plt.subplots(1, 2, figsize=(10, 4)) |
|
|
|
|
|
importances = clf.feature_importances_ |
|
axs[0].barh(range(len(feature_columns)), importances, color='skyblue') |
|
axs[0].set_yticks(range(len(feature_columns))) |
|
axs[0].set_yticklabels(feature_columns) |
|
axs[0].set_xlabel("Importance") |
|
axs[0].set_title("Feature Importances") |
|
|
|
|
|
im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) |
|
axs[1].set_title("Confusion Matrix") |
|
plt.colorbar(im, ax=axs[1]) |
|
axs[1].set_xlabel("Predicted") |
|
axs[1].set_ylabel("True") |
|
|
|
|
|
thresh = cm.max() / 2.0 |
|
for i in range(cm.shape[0]): |
|
for j in range(cm.shape[1]): |
|
color = "white" if cm[i, j] > thresh else "black" |
|
axs[1].text(j, i, str(cm[i, j]), ha="center", va="center", color=color) |
|
|
|
plt.tight_layout() |
|
|
|
|
|
text_summary = ( |
|
f"**Dataset used**: `{final_id}`\n\n" |
|
f"**Label column**: `{label_column}`\n\n" |
|
f"**Feature columns**: `{feature_columns}`\n\n" |
|
f"**Accuracy**: {accuracy:.3f}\n\n" |
|
) |
|
|
|
return text_summary, fig |
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
|
|
gr.Markdown( |
|
""" |
|
# Introduction to Gradient Boosting |
|
|
|
This Space demonstrates how to train a [GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#gradientboostingclassifier) from **scikit-learn** on **tabular datasets** hosted on the [Hugging Face Hub](https://huggingface.co/datasets). |
|
|
|
Gradient Boosting is an ensemble machine learning technique that combines many weak learners (usually small decision trees) in an iterative, stage-wise fashion to create a stronger overall model. |
|
In each step, the algorithm fits a new weak learner to the current errors of the combined ensemble, effectively allowing the model to focus on the hardest-to-predict data points. |
|
By repeatedly adding these specialized trees, Gradient Boosting can capture complex patterns and deliver high predictive accuracy, especially on tabular data. |
|
|
|
**Put simply, Gradient Boosting makes a big deal out of small anomolies!** |
|
|
|
**Purpose**: |
|
- Easily explore hyperparameters (_learning_rate, n_estimators, max_depth_) and quickly train an ML model on real data. |
|
- Visualise model performance via confusion matrix heatmap and a feature importance plot. |
|
|
|
**Notes**: |
|
- The dataset must have a **"train"** split with tabular columns (i.e., no nested structures). |
|
- Large datasets may take time to download/train. |
|
- The confusion matrix helps you see how predictions compare to ground-truth labels. The diagonal cells show correct predictions; off-diagonal cells indicate misclassifications. |
|
- The feature importance plot shows which features the model relies on the most for its predictions. |
|
|
|
--- |
|
|
|
**Usage**: |
|
1. Select one of the suggested datasets from the dropdown _or_ enter any valid dataset from the [Hugging Face Hub](https://huggingface.co/datasets). |
|
2. Click **Load Columns** to retrieve the column names from the dataset's **train** split. |
|
3. Choose exactly _one_ **Label column** (the target) and one or more **Feature columns** (the inputs). |
|
4. Adjust hyperparameters (learning_rate, n_estimators, max_depth, test_size). |
|
5. Click **Train & Evaluate** to train a Gradient Boosting model and see its accuracy, feature importances, and confusion matrix. |
|
|
|
You are now a machine learning engineer, congratulations π€ |
|
|
|
--- |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
dataset_dropdown = gr.Dropdown( |
|
label="Choose suggested dataset", |
|
choices=SUGGESTED_DATASETS, |
|
value=SUGGESTED_DATASETS[0] |
|
) |
|
custom_dataset_id = gr.Textbox( |
|
label="Or enter a custom dataset ID", |
|
placeholder="e.g. user/my_custom_dataset" |
|
) |
|
|
|
load_cols_btn = gr.Button("Load Columns") |
|
load_cols_info = gr.Markdown() |
|
|
|
with gr.Row(): |
|
label_col = gr.Dropdown(choices=[], label="Label column (choose 1)") |
|
feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)") |
|
|
|
|
|
learning_rate_slider = gr.Slider( |
|
minimum=0.01, maximum=1.0, value=0.1, step=0.01, |
|
label="learning_rate" |
|
) |
|
n_estimators_slider = gr.Slider( |
|
minimum=50, maximum=300, value=100, step=50, |
|
label="n_estimators" |
|
) |
|
max_depth_slider = gr.Slider( |
|
minimum=1, maximum=10, value=3, step=1, |
|
label="max_depth" |
|
) |
|
test_size_slider = gr.Slider( |
|
minimum=0.1, maximum=0.9, value=0.3, step=0.1, |
|
label="test_size fraction (0.1-0.9)" |
|
) |
|
|
|
train_button = gr.Button("Train & Evaluate") |
|
|
|
output_text = gr.Markdown() |
|
output_plot = gr.Plot() |
|
|
|
|
|
load_cols_btn.click( |
|
fn=update_columns, |
|
inputs=[dataset_dropdown, custom_dataset_id], |
|
outputs=[label_col, feature_cols, load_cols_info], |
|
) |
|
|
|
|
|
train_button.click( |
|
fn=train_model, |
|
inputs=[ |
|
dataset_dropdown, |
|
custom_dataset_id, |
|
label_col, |
|
feature_cols, |
|
learning_rate_slider, |
|
n_estimators_slider, |
|
max_depth_slider, |
|
test_size_slider |
|
], |
|
outputs=[output_text, output_plot], |
|
) |
|
|
|
demo.launch() |
|
|