ZennyKenny's picture
improve docs
e72fe9d verified
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from datasets import load_dataset
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
matplotlib.use('Agg')
################################################################################
# SUGGESTED_DATASETS: These must actually exist on huggingface.co/datasets
#
# "scikit-learn/iris" -> A small, classic Iris dataset with a "train" split
# "uci/wine" -> Another small dataset with a "train" split
# "SKIP/ENTER_CUSTOM" -> Placeholder to let the user enter a custom dataset ID
################################################################################
SUGGESTED_DATASETS = [
"scikit-learn/iris",
"uci/wine",
"SKIP/ENTER_CUSTOM"
]
def update_columns(dataset_id, custom_dataset_id):
"""
After the user chooses a dataset from the dropdown or enters their own,
this function loads the dataset's "train" split, converts it to a DataFrame,
and returns the columns. These columns are used to populate the Label and
Feature selectors in the UI.
"""
if dataset_id != "SKIP/ENTER_CUSTOM":
final_id = dataset_id
else:
final_id = custom_dataset_id.strip()
try:
ds = load_dataset(final_id, split="train")
df = pd.DataFrame(ds)
cols = df.columns.tolist()
message = (
f"**Loaded dataset**: `{final_id}`\n\n"
f"**Columns found**: {cols}"
)
return (
gr.update(choices=cols, value=None), # label_col dropdown
gr.update(choices=cols, value=[]), # feature_cols checkbox group
message
)
except Exception as e:
err_msg = f"**Error loading** `{final_id}`: {e}"
return (
gr.update(choices=[], value=None),
gr.update(choices=[], value=[]),
err_msg
)
def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
learning_rate, n_estimators, max_depth, test_size):
"""
1. Decide which dataset ID to load (from dropdown or custom).
2. Load that dataset's 'train' split, turn into DataFrame, extract X (features) and y (label).
3. Train a GradientBoostingClassifier on X_train, y_train.
4. Compute accuracy and confusion matrix on X_test, y_test.
5. Plot and return feature importances + confusion matrix heatmap + textual summary.
"""
# Resolve final dataset ID
if dataset_id != "SKIP/ENTER_CUSTOM":
final_id = dataset_id
else:
final_id = custom_dataset_id.strip()
# Load dataset -> df
ds = load_dataset(final_id, split="train")
df = pd.DataFrame(ds)
# Validate columns
if label_column not in df.columns:
raise ValueError(f"Label column '{label_column}' not found in dataset columns.")
for fc in feature_columns:
if fc not in df.columns:
raise ValueError(f"Feature column '{fc}' not found in dataset columns.")
# Convert to NumPy arrays
X = df[feature_columns].values
y = df[label_column].values
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=test_size, random_state=42
)
# Instantiate and train GradientBoostingClassifier
clf = GradientBoostingClassifier(
learning_rate=learning_rate,
n_estimators=int(n_estimators),
max_depth=int(max_depth),
random_state=42
)
clf.fit(X_train, y_train)
# Evaluate
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
cm = confusion_matrix(y_test, y_pred)
# Create Matplotlib figure with feature importances + confusion matrix
fig, axs = plt.subplots(1, 2, figsize=(10, 4))
# Subplot 1: Feature Importances
importances = clf.feature_importances_
axs[0].barh(range(len(feature_columns)), importances, color='skyblue')
axs[0].set_yticks(range(len(feature_columns)))
axs[0].set_yticklabels(feature_columns)
axs[0].set_xlabel("Importance")
axs[0].set_title("Feature Importances")
# Subplot 2: Confusion Matrix Heatmap
im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
axs[1].set_title("Confusion Matrix")
plt.colorbar(im, ax=axs[1])
axs[1].set_xlabel("Predicted")
axs[1].set_ylabel("True")
# Optionally annotate each cell with numeric counts
thresh = cm.max() / 2.0
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
color = "white" if cm[i, j] > thresh else "black"
axs[1].text(j, i, str(cm[i, j]), ha="center", va="center", color=color)
plt.tight_layout()
# Textual summary
text_summary = (
f"**Dataset used**: `{final_id}`\n\n"
f"**Label column**: `{label_column}`\n\n"
f"**Feature columns**: `{feature_columns}`\n\n"
f"**Accuracy**: {accuracy:.3f}\n\n"
)
return text_summary, fig
###############################################################################
# Gradio UI
###############################################################################
with gr.Blocks() as demo:
# High-level title and description
gr.Markdown(
"""
# Introduction to Gradient Boosting
This Space demonstrates how to train a [GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#gradientboostingclassifier) from **scikit-learn** on **tabular datasets** hosted on the [Hugging Face Hub](https://huggingface.co/datasets).
Gradient Boosting is an ensemble machine learning technique that combines many weak learners (usually small decision trees) in an iterative, stage-wise fashion to create a stronger overall model.
In each step, the algorithm fits a new weak learner to the current errors of the combined ensemble, effectively allowing the model to focus on the hardest-to-predict data points.
By repeatedly adding these specialized trees, Gradient Boosting can capture complex patterns and deliver high predictive accuracy, especially on tabular data.
**Put simply, Gradient Boosting makes a big deal out of small anomolies!**
**Purpose**:
- Easily explore hyperparameters (_learning_rate, n_estimators, max_depth_) and quickly train an ML model on real data.
- Visualise model performance via confusion matrix heatmap and a feature importance plot.
**Notes**:
- The dataset must have a **"train"** split with tabular columns (i.e., no nested structures).
- Large datasets may take time to download/train.
- The confusion matrix helps you see how predictions compare to ground-truth labels. The diagonal cells show correct predictions; off-diagonal cells indicate misclassifications.
- The feature importance plot shows which features the model relies on the most for its predictions.
---
**Usage**:
1. Select one of the suggested datasets from the dropdown _or_ enter any valid dataset from the [Hugging Face Hub](https://huggingface.co/datasets).
2. Click **Load Columns** to retrieve the column names from the dataset's **train** split.
3. Choose exactly _one_ **Label column** (the target) and one or more **Feature columns** (the inputs).
4. Adjust hyperparameters (learning_rate, n_estimators, max_depth, test_size).
5. Click **Train & Evaluate** to train a Gradient Boosting model and see its accuracy, feature importances, and confusion matrix.
You are now a machine learning engineer, congratulations πŸ€—
---
"""
)
with gr.Row():
dataset_dropdown = gr.Dropdown(
label="Choose suggested dataset",
choices=SUGGESTED_DATASETS,
value=SUGGESTED_DATASETS[0]
)
custom_dataset_id = gr.Textbox(
label="Or enter a custom dataset ID",
placeholder="e.g. user/my_custom_dataset"
)
load_cols_btn = gr.Button("Load Columns")
load_cols_info = gr.Markdown()
with gr.Row():
label_col = gr.Dropdown(choices=[], label="Label column (choose 1)")
feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)")
# Model Hyperparameters
learning_rate_slider = gr.Slider(
minimum=0.01, maximum=1.0, value=0.1, step=0.01,
label="learning_rate"
)
n_estimators_slider = gr.Slider(
minimum=50, maximum=300, value=100, step=50,
label="n_estimators"
)
max_depth_slider = gr.Slider(
minimum=1, maximum=10, value=3, step=1,
label="max_depth"
)
test_size_slider = gr.Slider(
minimum=0.1, maximum=0.9, value=0.3, step=0.1,
label="test_size fraction (0.1-0.9)"
)
train_button = gr.Button("Train & Evaluate")
output_text = gr.Markdown()
output_plot = gr.Plot()
# Link the "Load Columns" button -> update_columns function
load_cols_btn.click(
fn=update_columns,
inputs=[dataset_dropdown, custom_dataset_id],
outputs=[label_col, feature_cols, load_cols_info],
)
# Link "Train & Evaluate" -> train_model function
train_button.click(
fn=train_model,
inputs=[
dataset_dropdown,
custom_dataset_id,
label_col,
feature_cols,
learning_rate_slider,
n_estimators_slider,
max_depth_slider,
test_size_slider
],
outputs=[output_text, output_plot],
)
demo.launch()