Spaces:
Runtime error
Runtime error
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pinecone
|
2 |
+
|
3 |
+
# init connection to pinecone
|
4 |
+
pinecone.init(
|
5 |
+
api_key="0898750a-ee05-44f1-ac8a-98c5fef92f4a", # app.pinecone.io
|
6 |
+
environment="asia-southeast1-gcp-free" # find next to api key
|
7 |
+
)
|
8 |
+
|
9 |
+
# index_name = "hybrid-image-search"
|
10 |
+
|
11 |
+
# if index_name not in pinecone.list_indexes():
|
12 |
+
# # create the index
|
13 |
+
# pinecone.create_index(
|
14 |
+
# index_name,
|
15 |
+
# dimension=512,
|
16 |
+
# metric="dotproduct",
|
17 |
+
# pod_type="s1"
|
18 |
+
# )
|
19 |
+
index_name = pinecone.list_indexes()[0]
|
20 |
+
print(index_name)
|
21 |
+
|
22 |
+
index = pinecone.GRPCIndex(index_name)
|
23 |
+
|
24 |
+
from datasets import load_dataset
|
25 |
+
|
26 |
+
# load the dataset from huggingface datasets hub
|
27 |
+
fashion = load_dataset(
|
28 |
+
"ashraq/fashion-product-images-small",
|
29 |
+
split='train[:1000]'
|
30 |
+
)
|
31 |
+
|
32 |
+
images = fashion["image"]
|
33 |
+
metadata = fashion.remove_columns("image")
|
34 |
+
images[900]
|
35 |
+
|
36 |
+
import pandas as pd
|
37 |
+
|
38 |
+
metadata = metadata.to_pandas()
|
39 |
+
filtered = metadata[ (metadata['gender'] == 'Men') & (metadata['articleType'] == 'Jeans')& (metadata['baseColour'] == 'Blue')]
|
40 |
+
print(len(filtered))
|
41 |
+
metadata.head()
|
42 |
+
|
43 |
+
import requests
|
44 |
+
|
45 |
+
with open('pinecone_text.py' ,'w') as fb:
|
46 |
+
fb.write(requests.get('https://storage.googleapis.com/gareth-pinecone-datasets/pinecone_text.py').text)
|
47 |
+
|
48 |
+
from transformers import BertTokenizerFast
|
49 |
+
import pinecone_text
|
50 |
+
|
51 |
+
# load bert tokenizer from huggingface
|
52 |
+
tokenizer = BertTokenizerFast.from_pretrained(
|
53 |
+
'bert-base-uncased'
|
54 |
+
)
|
55 |
+
|
56 |
+
def tokenize_func(text):
|
57 |
+
token_ids = tokenizer(
|
58 |
+
text,
|
59 |
+
add_special_tokens=False
|
60 |
+
)['input_ids']
|
61 |
+
return tokenizer.convert_ids_to_tokens(token_ids)
|
62 |
+
|
63 |
+
bm25 = pinecone_text.BM25(tokenize_func)
|
64 |
+
|
65 |
+
tokenize_func('Turtle Check Men Navy Blue Shirt')
|
66 |
+
|
67 |
+
bm25.fit(metadata['productDisplayName'])
|
68 |
+
|
69 |
+
display(metadata['productDisplayName'][0])
|
70 |
+
bm25.transform_query(metadata['productDisplayName'][0])
|
71 |
+
|
72 |
+
from sentence_transformers import SentenceTransformer
|
73 |
+
import transformers.models.clip.image_processing_clip
|
74 |
+
import torch
|
75 |
+
|
76 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
77 |
+
|
78 |
+
# load a CLIP model from huggingface
|
79 |
+
model = SentenceTransformer(
|
80 |
+
'sentence-transformers/clip-ViT-B-32',
|
81 |
+
device=device
|
82 |
+
)
|
83 |
+
model
|
84 |
+
|
85 |
+
dense_vec = model.encode([metadata['productDisplayName'][0]])
|
86 |
+
dense_vec.shape
|
87 |
+
|
88 |
+
#len(fashion)
|
89 |
+
|
90 |
+
"""##Encode the dataset to index
|
91 |
+
|
92 |
+
|
93 |
+
"""
|
94 |
+
|
95 |
+
# from tqdm.auto import tqdm
|
96 |
+
|
97 |
+
# batch_size = 200
|
98 |
+
|
99 |
+
# for i in tqdm(range(0, len(fashion), batch_size)):
|
100 |
+
# # find end of batch
|
101 |
+
# i_end = min(i+batch_size, len(fashion))
|
102 |
+
# # extract metadata batch
|
103 |
+
# meta_batch = metadata.iloc[i:i_end]
|
104 |
+
# meta_dict = meta_batch.to_dict(orient="records")
|
105 |
+
# # concatinate all metadata field except for id and year to form a single string
|
106 |
+
# meta_batch = [" ".join(x) for x in meta_batch.loc[:, ~meta_batch.columns.isin(['id', 'year'])].values.tolist()]
|
107 |
+
# # extract image batch
|
108 |
+
# img_batch = images[i:i_end]
|
109 |
+
# # create sparse BM25 vectors
|
110 |
+
# sparse_embeds = [bm25.transform_doc(text) for text in meta_batch]
|
111 |
+
# # create dense vectors
|
112 |
+
# dense_embeds = model.encode(img_batch).tolist()
|
113 |
+
# # create unique IDs
|
114 |
+
# ids = [str(x) for x in range(i, i_end)]
|
115 |
+
|
116 |
+
# upserts = []
|
117 |
+
# # loop through the data and create dictionaries for uploading documents to pinecone index
|
118 |
+
# for _id, sparse, dense, meta in zip(ids, sparse_embeds, dense_embeds, meta_dict):
|
119 |
+
# upserts.append({
|
120 |
+
# 'id': _id,
|
121 |
+
# 'sparse_values': sparse,
|
122 |
+
# 'values': dense,
|
123 |
+
# 'metadata': meta
|
124 |
+
# })
|
125 |
+
# # upload the documents to the new hybrid index
|
126 |
+
# index.upsert(upserts)
|
127 |
+
|
128 |
+
# show index description after uploading the documents
|
129 |
+
index.describe_index_stats()
|
130 |
+
|
131 |
+
from IPython.core.display import HTML
|
132 |
+
from io import BytesIO
|
133 |
+
from base64 import b64encode
|
134 |
+
import pinecone_text
|
135 |
+
|
136 |
+
# function to display product images
|
137 |
+
def display_result(image_batch):
|
138 |
+
figures = []
|
139 |
+
for img in image_batch:
|
140 |
+
b = BytesIO()
|
141 |
+
img.save(b, format='png')
|
142 |
+
figures.append(f'''
|
143 |
+
<figure style="margin: 5px !important;">
|
144 |
+
<img src="data:image/png;base64,{b64encode(b.getvalue()).decode('utf-8')}" style="width: 90px; height: 120px" >
|
145 |
+
</figure>
|
146 |
+
''')
|
147 |
+
return HTML(data=f'''
|
148 |
+
<div style="display: flex; flex-flow: row wrap; text-align: center;">
|
149 |
+
{''.join(figures)}
|
150 |
+
</div>
|
151 |
+
''')
|
152 |
+
|
153 |
+
def hybrid_scale(dense, sparse, alpha: float):
|
154 |
+
"""Hybrid vector scaling using a convex combination
|
155 |
+
|
156 |
+
alpha * dense + (1 - alpha) * sparse
|
157 |
+
|
158 |
+
Args:
|
159 |
+
dense: Array of floats representing
|
160 |
+
sparse: a dict of `indices` and `values`
|
161 |
+
alpha: float between 0 and 1 where 0 == sparse only
|
162 |
+
and 1 == dense only
|
163 |
+
"""
|
164 |
+
if alpha < 0 or alpha > 1:
|
165 |
+
raise ValueError("Alpha must be between 0 and 1")
|
166 |
+
# scale sparse and dense vectors to create hybrid search vecs
|
167 |
+
hsparse = {
|
168 |
+
'indices': sparse['indices'],
|
169 |
+
'values': [v * (1 - alpha) for v in sparse['values']]
|
170 |
+
}
|
171 |
+
hdense = [v * alpha for v in dense]
|
172 |
+
return hdense, hsparse
|
173 |
+
|
174 |
+
def text_to_image(query, alpha, k_results):
|
175 |
+
|
176 |
+
sparse = bm25.transform_query(query)
|
177 |
+
dense = model.encode(query).tolist()
|
178 |
+
|
179 |
+
# scale sparse and dense vectors
|
180 |
+
hdense, hsparse = hybrid_scale(dense, sparse, alpha=alpha)
|
181 |
+
|
182 |
+
# search
|
183 |
+
result = index.query(
|
184 |
+
top_k=k_results,
|
185 |
+
vector=hdense,
|
186 |
+
sparse_vector=hsparse,
|
187 |
+
include_metadata=True
|
188 |
+
)
|
189 |
+
# used returned product ids to get images
|
190 |
+
imgs = [images[int(r["id"])] for r in result["matches"]]
|
191 |
+
|
192 |
+
description = []
|
193 |
+
for x in result["matches"]:
|
194 |
+
description.append( x["metadata"]['productDisplayName'] )
|
195 |
+
|
196 |
+
return imgs, description
|
197 |
+
|
198 |
+
def show_dir_content():
|
199 |
+
for dirname, _, filenames in os.walk('./'):
|
200 |
+
for filename in filenames:
|
201 |
+
print(os.path.join(dirname, filename))
|
202 |
+
|
203 |
+
import shutil
|
204 |
+
from PIL import Image
|
205 |
+
import os
|
206 |
+
|
207 |
+
counter = {"dir_num": 1}
|
208 |
+
img_files = {'x':[]}
|
209 |
+
|
210 |
+
def img_to_file_list(imgs):
|
211 |
+
|
212 |
+
os.chdir('/content')
|
213 |
+
|
214 |
+
path = "searches"
|
215 |
+
sub_path = 'content/' + path + '/' + 'search' + '_' + str(counter["dir_num"])
|
216 |
+
|
217 |
+
# Check whether the specified path exists or not
|
218 |
+
isExist = os.path.exists('content'+'/'+path)
|
219 |
+
if not isExist:
|
220 |
+
print("Directory does not exists")
|
221 |
+
# Create a new directory because it does not exist
|
222 |
+
os.makedirs('content'+'/'+path, exist_ok = True)
|
223 |
+
print("The new directory is created!")
|
224 |
+
|
225 |
+
#else:
|
226 |
+
# os.chdir('/content/'+path)
|
227 |
+
|
228 |
+
print("Subdir ->The Current working directory is: {0}".format(os.getcwd()))
|
229 |
+
|
230 |
+
# Check whether the specified path exists or not
|
231 |
+
isExist = os.path.exists(sub_path)
|
232 |
+
if isExist:
|
233 |
+
shutil.rmtree(sub_path)
|
234 |
+
|
235 |
+
os.makedirs(sub_path, exist_ok = True)
|
236 |
+
|
237 |
+
img_files = {'search'+str(counter["dir_num"]):[]}
|
238 |
+
i = 0
|
239 |
+
curr_dir = os.getcwd()
|
240 |
+
for img in imgs:
|
241 |
+
img.save(sub_path+"/img_" + str(i) + ".png","PNG")
|
242 |
+
img_files['search'+str(counter["dir_num"])].append(sub_path + '/' + 'img_'+ str(i) + ".png")
|
243 |
+
|
244 |
+
i+=1
|
245 |
+
|
246 |
+
counter["dir_num"]+=1
|
247 |
+
|
248 |
+
return img_files['search'+str(counter["dir_num"]-1)]
|
249 |
+
|
250 |
+
#print(os.getcwd())
|
251 |
+
# os.chdir('/content/searches')
|
252 |
+
# print("The Current working directory is: {0}".format(os.getcwd()))
|
253 |
+
# show_dir_content()
|
254 |
+
|
255 |
+
# imgs2, descr = text_to_image('blue jeans for women', 0.5, 4)
|
256 |
+
|
257 |
+
# print("The Current working directory is: {0}".format(os.getcwd()))
|
258 |
+
# show_dir_content()
|
259 |
+
|
260 |
+
# img_files = img_to_file_list(imgs2)
|
261 |
+
|
262 |
+
# display(img_files)
|
263 |
+
|
264 |
+
# print("The Current working directory is: {0}".format(os.getcwd()))
|
265 |
+
# show_dir_content()
|
266 |
+
|
267 |
+
# shutil.rmtree('/content/searches')
|
268 |
+
|
269 |
+
# #shutil.rmtree('./content/searches')
|
270 |
+
# #print("The Current working directory is: {0}".format(os.getcwd()))
|
271 |
+
# #show_dir_content()
|
272 |
+
# #counter, img_files = img_to_file_list(imgs1, counter, img_files)
|
273 |
+
# #display(img_files)
|
274 |
+
|
275 |
+
# #counter, img_files = img_to_file_list(imgs2)
|
276 |
+
|
277 |
+
import gradio as gr
|
278 |
+
from deep_translator import GoogleTranslator
|
279 |
+
|
280 |
+
css = '''
|
281 |
+
.gallery img {
|
282 |
+
width: 45px;
|
283 |
+
height: 60px;
|
284 |
+
object-fit: contain;
|
285 |
+
}
|
286 |
+
'''
|
287 |
+
|
288 |
+
counter = {"dir_num": 1}
|
289 |
+
img_files = {'x':[]}
|
290 |
+
|
291 |
+
def fake_gan(text, alpha):
|
292 |
+
text_eng=GoogleTranslator(source='iw', target='en').translate(text)
|
293 |
+
imgs, descr = text_to_image(text_eng, alpha, 3)
|
294 |
+
img_files = img_to_file_list(imgs)
|
295 |
+
return img_files
|
296 |
+
|
297 |
+
def fake_text(text, alpha):
|
298 |
+
en_text = GoogleTranslator(source='iw', target='en').translate(text)
|
299 |
+
img , descr = text_to_image(en_text, alpha, 3)
|
300 |
+
return descr
|
301 |
+
|
302 |
+
with gr.Blocks() as demo:
|
303 |
+
|
304 |
+
with gr.Row():#variant="compact"):
|
305 |
+
|
306 |
+
text = gr.Textbox(
|
307 |
+
value = "讙'讬谞住 讻讞讜诇 诇讙讘专讬诐",
|
308 |
+
label="Enter the product characteristics:",
|
309 |
+
#show_label=True,
|
310 |
+
#max_lines=1,
|
311 |
+
#placeholder="Enter your prompt",
|
312 |
+
)
|
313 |
+
|
314 |
+
alpha = gr.Slider(0, 1, step=0.01, label='Choose alpha:', value = 0.05)
|
315 |
+
|
316 |
+
with gr.Row():
|
317 |
+
btn = gr.Button("Generate image")
|
318 |
+
|
319 |
+
with gr.Row():
|
320 |
+
gallery = gr.Gallery(
|
321 |
+
label="Generated images", show_label=False, elem_id="gallery"
|
322 |
+
).style(columns=[8], rows=[2], object_fit='scale-down', height='auto')
|
323 |
+
|
324 |
+
with gr.Row():
|
325 |
+
selected = gr.Textbox(label="Product description: ", interactive=False, value = "-----> Description <-------",placeholder="Selected")
|
326 |
+
|
327 |
+
btn.click(fake_gan, inputs=[text, alpha], outputs=gallery)
|
328 |
+
|
329 |
+
def get_select_index(evt: gr.SelectData,text,alpha):
|
330 |
+
print(evt.index)
|
331 |
+
eng_text = fake_text(text, alpha)[evt.index]
|
332 |
+
heb_text = GoogleTranslator(source='en', target='iw').translate(eng_text)
|
333 |
+
return heb_text
|
334 |
+
|
335 |
+
#gallery.select( get_select_index, None, selected )
|
336 |
+
gallery.select( fn=get_select_index, inputs=[text,alpha], outputs=selected )
|
337 |
+
|
338 |
+
demo.launch()
|
339 |
+
#shutil.rmtree('/content/searches')
|