import streamlit as st from kokoro import KPipeline import soundfile as sf import io import os # Install espeak-ng if not installed if not os.system("which espeak-ng"): st.text("espeak-ng already installed.") else: os.system("apt-get -qq -y install espeak-ng") st.text("Installing espeak-ng...") # Streamlit App UI Setup st.title("Text-to-Speech with Kokoro") # Expander section to display information in multiple languages with st.expander("Sample Prompt!"): st.markdown(""" - My name is Shukdev. (In English) - Mi nombre es Shukdev. (In Spanish) - Je m'appelle Choukdev. (In French) - मेरा नाम शुकदेव है. (In Hindi) - Il mio nome è Shukdev. (In Italy) - Meu nome é Sukhdev. (In Portuguese, Brazil) - 我叫苏赫德夫。(In Chinese) - 私の名前はスクデフです。(In Japanese) """) st.sidebar.header("Configuration & Instructions") # Sidebar Instructions st.sidebar.markdown(""" ### How to Use the Text-to-Speech App: 1. **Enter Text**: In the main text area, input any text that you want the model to convert to speech. 2. **Select Language**: - Choose the language of the text you are entering. Available options include: - 🇺🇸 American English (`a`) - 🇬🇧 British English (`b`) - 🇪🇸 Spanish (`e`) - 🇫🇷 French (`f`) - 🇮🇳 Hindi (`h`) - 🇮🇹 Italian (`i`) - 🇧🇷 Brazilian Portuguese (`p`) - 🇨🇳 Mandarin Chinese (`z`) - 🇯🇵 Japanese (`j`) 3. **Select Voice**: - Choose the voice style for the speech. You can pick different voices based on tone and gender, such as `af_heart`, `af_joy`, etc. 4. **Adjust Speed**: - Use the speed slider to change how fast the speech is generated. You can set it between `0.5x` to `2.0x`, where `1.0x` is the normal speed. 5. **Generate Speech**: - After configuring the settings, click on the **"Generate Audio"** button. The app will process your text and produce speech audio accordingly. 6. **Download**: - Once the audio is generated, you can play it directly in the app or download it as a `.wav` file by clicking on the **"Download Audio"** button. Enjoy experimenting with the text-to-speech conversion, and feel free to try different voices, speeds, and languages! """) st.sidebar.markdown(""" ### Courtesy: [Kokoro](https://huggingface.co/hexgrad/Kokoro-82M?fbclid=IwY2xjawIKqzxleHRuA2FlbQIxMAABHaf9GldgYOzXktNuoRtNKqd-aL7r-S7zPGyC8ttYOiG2zYfQqLyV4Qm75A_aem_0wKLC2C87ZZ2F04WjPJbtA) """) # User input for text, language, and voice settings input_text = st.text_area("Enter your text here", placeholder="The sky above the port was the color of television...") lang_code = st.selectbox("Select Language", ['a', 'b', 'e', 'f', 'h', 'i', 'p', 'z', 'j']) voice = st.selectbox("Select Voice", ['af_alloy', 'af_aoede', 'af_bella', 'af_heart', 'af_jessica', 'af_kore', 'af_nicole', 'af_nova', 'af_river', 'af_sarah', 'af_sky', 'am_adam', 'am_echo', 'am_eric', 'am_fenrir', 'am_liam', 'am_michael', 'am_onyx', 'am_puck', 'am_santa', 'bf_alice', 'bf_emma', 'bf_isabella', 'bf_lily', 'bm_daniel', 'bm_fable', 'bm_george', 'bm_lewis', 'ef_dora', 'em_alex', 'em_santa', 'ff_siwis', 'hf_alpha', 'hf_beta', 'hm_omega', 'hm_psi', 'if_sara', 'im_nicola', 'jf_alpha', 'jf_gongitsune', 'jf_nezumi', 'jf_tebukuro', 'jm_kumo', 'pf_dora', 'pm_alex', 'pm_santa', 'zf_xiaobei', 'zf_xiaoni', 'zf_xiaoxiao', 'zf_xiaoyi', 'zm_yunjian', 'zm_yunxi', 'zm_yunxia', 'zm_yunyang'] ) # Change voice options as per model speed = st.slider("Speed", min_value=0.5, max_value=2.0, value=1.0, step=0.1) # Initialize the TTS pipeline with user-selected language pipeline = KPipeline(lang_code=lang_code) # Generate Audio function def generate_audio(text, lang_code, voice, speed): generator = pipeline(text, voice=voice, speed=speed, split_pattern=r'\n+') for i, (gs, ps, audio) in enumerate(generator): audio_data = audio # Save audio to in-memory buffer buffer = io.BytesIO() # Explicitly specify format as WAV sf.write(buffer, audio_data, 24000, format='WAV') # Add 'format="WAV"' buffer.seek(0) return buffer # Generate and display the audio file if st.button('Generate Audio'): st.write("Generating speech...") audio_buffer = generate_audio(input_text, lang_code, voice, speed) # Display Audio player in the app st.audio(audio_buffer, format='audio/wav') # Optional: Save the generated audio file for download st.download_button( label="Download Audio", data=audio_buffer, file_name="generated_speech.wav", mime="audio/wav" )