hank1996 commited on
Commit
eadd7b4
·
1 Parent(s): d566fd1

Create new file

Browse files
Files changed (1) hide show
  1. models/experimental.py +108 -0
models/experimental.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+ from models.common import Conv, DWConv
7
+ from utils.google_utils import attempt_download
8
+
9
+
10
+ class CrossConv(nn.Module):
11
+ # Cross Convolution Downsample
12
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14
+ super(CrossConv, self).__init__()
15
+ c_ = int(c2 * e) # hidden channels
16
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
17
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18
+ self.add = shortcut and c1 == c2
19
+
20
+ def forward(self, x):
21
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22
+
23
+
24
+ class Sum(nn.Module):
25
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
26
+ def __init__(self, n, weight=False): # n: number of inputs
27
+ super(Sum, self).__init__()
28
+ self.weight = weight # apply weights boolean
29
+ self.iter = range(n - 1) # iter object
30
+ if weight:
31
+ self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
32
+
33
+ def forward(self, x):
34
+ y = x[0] # no weight
35
+ if self.weight:
36
+ w = torch.sigmoid(self.w) * 2
37
+ for i in self.iter:
38
+ y = y + x[i + 1] * w[i]
39
+ else:
40
+ for i in self.iter:
41
+ y = y + x[i + 1]
42
+ return y
43
+
44
+
45
+ class MixConv2d(nn.Module):
46
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
47
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
48
+ super(MixConv2d, self).__init__()
49
+ groups = len(k)
50
+ if equal_ch: # equal c_ per group
51
+ i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
52
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
53
+ else: # equal weight.numel() per group
54
+ b = [c2] + [0] * groups
55
+ a = np.eye(groups + 1, groups, k=-1)
56
+ a -= np.roll(a, 1, axis=1)
57
+ a *= np.array(k) ** 2
58
+ a[0] = 1
59
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
60
+
61
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
62
+ self.bn = nn.BatchNorm2d(c2)
63
+ self.act = nn.LeakyReLU(0.1, inplace=True)
64
+
65
+ def forward(self, x):
66
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
67
+
68
+
69
+ class Ensemble(nn.ModuleList):
70
+ # Ensemble of models
71
+ def __init__(self):
72
+ super(Ensemble, self).__init__()
73
+
74
+ def forward(self, x, augment=False):
75
+ y = []
76
+ for module in self:
77
+ y.append(module(x, augment)[0])
78
+ # y = torch.stack(y).max(0)[0] # max ensemble
79
+ # y = torch.stack(y).mean(0) # mean ensemble
80
+ y = torch.cat(y, 1) # nms ensemble
81
+ return y, None # inference, train output
82
+
83
+
84
+ def attempt_load(weights, map_location=None):
85
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
86
+ model = Ensemble()
87
+ for w in weights if isinstance(weights, list) else [weights]:
88
+ attempt_download(w)
89
+ ckpt = torch.load(w, map_location=map_location) # load
90
+ model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
91
+
92
+ # Compatibility updates
93
+ for m in model.modules():
94
+ if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
95
+ m.inplace = True # pytorch 1.7.0 compatibility
96
+ elif type(m) is nn.Upsample:
97
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
98
+ elif type(m) is Conv:
99
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
100
+
101
+ if len(model) == 1:
102
+ return model[-1] # return model
103
+ else:
104
+ print('Ensemble created with %s\n' % weights)
105
+ for k in ['names', 'stride']:
106
+ setattr(model, k, getattr(model[-1], k))
107
+ return model # return ensemble
108
+